Metamath Proof Explorer


Theorem bnj1146

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1146.1 y A x y A
Assertion bnj1146 x A B B

Proof

Step Hyp Ref Expression
1 bnj1146.1 y A x y A
2 nfv y x A w B
3 1 nf5i x y A
4 nfv x w B
5 3 4 nfan x y A w B
6 eleq1w x = y x A y A
7 6 anbi1d x = y x A w B y A w B
8 2 5 7 cbvexv1 x x A w B y y A w B
9 df-rex x A w B x x A w B
10 df-rex y A w B y y A w B
11 8 9 10 3bitr4i x A w B y A w B
12 11 abbii w | x A w B = w | y A w B
13 df-iun x A B = w | x A w B
14 df-iun y A B = w | y A w B
15 12 13 14 3eqtr4i x A B = y A B
16 bnj1143 y A B B
17 15 16 eqsstri x A B B