Metamath Proof Explorer


Theorem bnj1318

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1318 X=YtrClXAR=trClYAR

Proof

Step Hyp Ref Expression
1 bnj602 X=YpredXAR=predYAR
2 1 eqeq2d X=Yf=predXARf=predYAR
3 2 3anbi2d X=YfFnnf=predXARiωsucinfsuci=yfipredyARfFnnf=predYARiωsucinfsuci=yfipredyAR
4 3 rexbidv X=YnωfFnnf=predXARiωsucinfsuci=yfipredyARnωfFnnf=predYARiωsucinfsuci=yfipredyAR
5 4 abbidv X=Yf|nωfFnnf=predXARiωsucinfsuci=yfipredyAR=f|nωfFnnf=predYARiωsucinfsuci=yfipredyAR
6 hbab1 zf|nωfFnnf=predXARiωsucinfsuci=yfipredyARfzf|nωfFnnf=predXARiωsucinfsuci=yfipredyAR
7 hbab1 zf|nωfFnnf=predYARiωsucinfsuci=yfipredyARfzf|nωfFnnf=predYARiωsucinfsuci=yfipredyAR
8 6 7 bnj1316 f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR=f|nωfFnnf=predYARiωsucinfsuci=yfipredyARff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi=ff|nωfFnnf=predYARiωsucinfsuci=yfipredyARidomffi
9 5 8 syl X=Yff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi=ff|nωfFnnf=predYARiωsucinfsuci=yfipredyARidomffi
10 biid f=predXARf=predXAR
11 biid iωsucinfsuci=yfipredyARiωsucinfsuci=yfipredyAR
12 eqid ω=ω
13 eqid f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR=f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR
14 10 11 12 13 bnj882 trClXAR=ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi
15 biid f=predYARf=predYAR
16 eqid f|nωfFnnf=predYARiωsucinfsuci=yfipredyAR=f|nωfFnnf=predYARiωsucinfsuci=yfipredyAR
17 15 11 12 16 bnj882 trClYAR=ff|nωfFnnf=predYARiωsucinfsuci=yfipredyARidomffi
18 9 14 17 3eqtr4g X=YtrClXAR=trClYAR