Metamath Proof Explorer


Theorem bnj1318

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1318 X = Y trCl X A R = trCl Y A R

Proof

Step Hyp Ref Expression
1 bnj602 X = Y pred X A R = pred Y A R
2 1 eqeq2d X = Y f = pred X A R f = pred Y A R
3 2 3anbi2d X = Y f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R
4 3 rexbidv X = Y n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R
5 4 abbidv X = Y f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R = f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R
6 hbab1 z f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R f z f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
7 hbab1 z f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R f z f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R
8 6 7 bnj1316 f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R = f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i = f f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R i dom f f i
9 5 8 syl X = Y f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i = f f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R i dom f f i
10 biid f = pred X A R f = pred X A R
11 biid i ω suc i n f suc i = y f i pred y A R i ω suc i n f suc i = y f i pred y A R
12 eqid ω = ω
13 eqid f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R = f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
14 10 11 12 13 bnj882 trCl X A R = f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i
15 biid f = pred Y A R f = pred Y A R
16 eqid f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R = f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R
17 15 11 12 16 bnj882 trCl Y A R = f f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R i dom f f i
18 9 14 17 3eqtr4g X = Y trCl X A R = trCl Y A R