Metamath Proof Explorer


Theorem bnj1468

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1468.1 ψ x ψ
bnj1468.2 x = A φ ψ
bnj1468.3 y A x y A
Assertion bnj1468 A V [˙A / x]˙ φ ψ

Proof

Step Hyp Ref Expression
1 bnj1468.1 ψ x ψ
2 bnj1468.2 x = A φ ψ
3 bnj1468.3 y A x y A
4 sbccow [˙A / y]˙ [˙y / x]˙ φ [˙A / x]˙ φ
5 ax-5 ψ y ψ
6 3 nfcii _ x A
7 6 nfeq2 x y = A
8 nfsbc1v x [˙y / x]˙ φ
9 1 nf5i x ψ
10 8 9 nfbi x [˙y / x]˙ φ ψ
11 7 10 nfim x y = A [˙y / x]˙ φ ψ
12 11 nf5ri y = A [˙y / x]˙ φ ψ x y = A [˙y / x]˙ φ ψ
13 ax6ev x x = y
14 eqeq1 x = y x = A y = A
15 14 2 syl6bir x = y y = A φ ψ
16 sbceq1a x = y φ [˙y / x]˙ φ
17 16 bibi1d x = y φ ψ [˙y / x]˙ φ ψ
18 15 17 sylibd x = y y = A [˙y / x]˙ φ ψ
19 13 18 bnj101 x y = A [˙y / x]˙ φ ψ
20 12 19 bnj1131 y = A [˙y / x]˙ φ ψ
21 5 20 bnj1464 A V [˙A / y]˙ [˙y / x]˙ φ ψ
22 4 21 bitr3id A V [˙A / x]˙ φ ψ