| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1468.1 |
⊢ ( 𝜓 → ∀ 𝑥 𝜓 ) |
| 2 |
|
bnj1468.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
|
bnj1468.3 |
⊢ ( 𝑦 ∈ 𝐴 → ∀ 𝑥 𝑦 ∈ 𝐴 ) |
| 4 |
|
sbccow |
⊢ ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) |
| 5 |
|
ax-5 |
⊢ ( 𝜓 → ∀ 𝑦 𝜓 ) |
| 6 |
3
|
nfcii |
⊢ Ⅎ 𝑥 𝐴 |
| 7 |
6
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = 𝐴 |
| 8 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 |
| 9 |
1
|
nf5i |
⊢ Ⅎ 𝑥 𝜓 |
| 10 |
8 9
|
nfbi |
⊢ Ⅎ 𝑥 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 11 |
7 10
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 12 |
11
|
nf5ri |
⊢ ( ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) ) |
| 13 |
|
ax6ev |
⊢ ∃ 𝑥 𝑥 = 𝑦 |
| 14 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) |
| 15 |
14 2
|
biimtrrdi |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) |
| 16 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 17 |
16
|
bibi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ↔ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) ) |
| 18 |
15 17
|
sylibd |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) ) |
| 19 |
13 18
|
bnj101 |
⊢ ∃ 𝑥 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 20 |
12 19
|
bnj1131 |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 21 |
5 20
|
bnj1464 |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 22 |
4 21
|
bitr3id |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |