Metamath Proof Explorer


Theorem bnj1500

Description: Well-founded recursion, part 2 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1500.1 B=d|dAxdpredxARd
bnj1500.2 Y=xfpredxAR
bnj1500.3 C=f|dBfFndxdfx=GY
bnj1500.4 F=C
Assertion bnj1500 RFrSeAxAFx=GxFpredxAR

Proof

Step Hyp Ref Expression
1 bnj1500.1 B=d|dAxdpredxARd
2 bnj1500.2 Y=xfpredxAR
3 bnj1500.3 C=f|dBfFndxdfx=GY
4 bnj1500.4 F=C
5 biid RFrSeAxARFrSeAxA
6 biid RFrSeAxAfCxdomfRFrSeAxAfCxdomf
7 biid RFrSeAxAfCxdomfdBdomf=dRFrSeAxAfCxdomfdBdomf=d
8 1 2 3 4 5 6 7 bnj1501 RFrSeAxAFx=GxFpredxAR