Metamath Proof Explorer


Theorem bnj18eq1

Description: Equality theorem for transitive closure. (Contributed by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Assertion bnj18eq1 X=YtrClXAR=trClYAR

Proof

Step Hyp Ref Expression
1 bnj602 X=YpredXAR=predYAR
2 1 eqeq2d X=Yf=predXARf=predYAR
3 2 3anbi2d X=YfFnnf=predXARiωsucinfsuci=yfipredyARfFnnf=predYARiωsucinfsuci=yfipredyAR
4 3 rexbidv X=YnωfFnnf=predXARiωsucinfsuci=yfipredyARnωfFnnf=predYARiωsucinfsuci=yfipredyAR
5 4 abbidv X=Yf|nωfFnnf=predXARiωsucinfsuci=yfipredyAR=f|nωfFnnf=predYARiωsucinfsuci=yfipredyAR
6 5 eleq2d X=Yff|nωfFnnf=predXARiωsucinfsuci=yfipredyARff|nωfFnnf=predYARiωsucinfsuci=yfipredyAR
7 6 anbi1d X=Yff|nωfFnnf=predXARiωsucinfsuci=yfipredyARxidomffiff|nωfFnnf=predYARiωsucinfsuci=yfipredyARxidomffi
8 7 rexbidv2 X=Yff|nωfFnnf=predXARiωsucinfsuci=yfipredyARxidomffiff|nωfFnnf=predYARiωsucinfsuci=yfipredyARxidomffi
9 8 abbidv X=Yx|ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARxidomffi=x|ff|nωfFnnf=predYARiωsucinfsuci=yfipredyARxidomffi
10 df-iun ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi=x|ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARxidomffi
11 df-iun ff|nωfFnnf=predYARiωsucinfsuci=yfipredyARidomffi=x|ff|nωfFnnf=predYARiωsucinfsuci=yfipredyARxidomffi
12 9 10 11 3eqtr4g X=Yff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi=ff|nωfFnnf=predYARiωsucinfsuci=yfipredyARidomffi
13 df-bnj18 trClXAR=ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi
14 df-bnj18 trClYAR=ff|nωfFnnf=predYARiωsucinfsuci=yfipredyARidomffi
15 12 13 14 3eqtr4g X=YtrClXAR=trClYAR