Metamath Proof Explorer


Theorem bnj521

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj521 A A =

Proof

Step Hyp Ref Expression
1 elirr ¬ A A
2 elin x A A x A x A
3 velsn x A x = A
4 eleq1 x = A x A A A
5 4 biimpac x A x = A A A
6 3 5 sylan2b x A x A A A
7 2 6 sylbi x A A A A
8 7 exlimiv x x A A A A
9 1 8 mto ¬ x x A A
10 n0 A A x x A A
11 9 10 mtbir ¬ A A
12 nne ¬ A A A A =
13 11 12 mpbi A A =