Metamath Proof Explorer


Theorem bnj521

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj521
|- ( A i^i { A } ) = (/)

Proof

Step Hyp Ref Expression
1 elirr
 |-  -. A e. A
2 elin
 |-  ( x e. ( A i^i { A } ) <-> ( x e. A /\ x e. { A } ) )
3 velsn
 |-  ( x e. { A } <-> x = A )
4 eleq1
 |-  ( x = A -> ( x e. A <-> A e. A ) )
5 4 biimpac
 |-  ( ( x e. A /\ x = A ) -> A e. A )
6 3 5 sylan2b
 |-  ( ( x e. A /\ x e. { A } ) -> A e. A )
7 2 6 sylbi
 |-  ( x e. ( A i^i { A } ) -> A e. A )
8 7 exlimiv
 |-  ( E. x x e. ( A i^i { A } ) -> A e. A )
9 1 8 mto
 |-  -. E. x x e. ( A i^i { A } )
10 n0
 |-  ( ( A i^i { A } ) =/= (/) <-> E. x x e. ( A i^i { A } ) )
11 9 10 mtbir
 |-  -. ( A i^i { A } ) =/= (/)
12 nne
 |-  ( -. ( A i^i { A } ) =/= (/) <-> ( A i^i { A } ) = (/) )
13 11 12 mpbi
 |-  ( A i^i { A } ) = (/)