Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj558.3 | |
|
bnj558.16 | |
||
bnj558.17 | No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |- | ||
bnj558.18 | |
||
bnj558.19 | |
||
bnj558.20 | |
||
bnj558.21 | |
||
bnj558.22 | |
||
bnj558.23 | |
||
bnj558.24 | |
||
bnj558.25 | |
||
bnj558.28 | No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |- | ||
bnj558.29 | No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |- | ||
bnj558.36 | |
||
Assertion | bnj558 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj558.3 | |
|
2 | bnj558.16 | |
|
3 | bnj558.17 | Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |- | |
4 | bnj558.18 | |
|
5 | bnj558.19 | |
|
6 | bnj558.20 | |
|
7 | bnj558.21 | |
|
8 | bnj558.22 | |
|
9 | bnj558.23 | |
|
10 | bnj558.24 | |
|
11 | bnj558.25 | |
|
12 | bnj558.28 | Could not format ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |- | |
13 | bnj558.29 | Could not format ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |- | |
14 | bnj558.36 | |
|
15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | bnj557 | |
16 | bnj422 | |
|
17 | bnj253 | |
|
18 | 16 17 | bitri | |
19 | 18 | simp1bi | |
20 | 5 6 9 10 9 10 | bnj554 | |
21 | 19 20 | syl | |
22 | 15 21 | mpbid | |