Metamath Proof Explorer


Theorem bnj558

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj558.3 D=ω
bnj558.16 G=fmyfppredyAR
bnj558.17 No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
bnj558.18 σmDn=sucmpm
bnj558.19 ηmDn=sucmpωm=sucp
bnj558.20 ζiωsucinm=suci
bnj558.21 B=yfipredyAR
bnj558.22 C=yfppredyAR
bnj558.23 K=yGipredyAR
bnj558.24 L=yGppredyAR
bnj558.25 G=fmC
bnj558.28 No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
bnj558.29 No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
bnj558.36 RFrSeAτσGFnn
Assertion bnj558 RFrSeAτηζGsuci=K

Proof

Step Hyp Ref Expression
1 bnj558.3 D=ω
2 bnj558.16 G=fmyfppredyAR
3 bnj558.17 Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
4 bnj558.18 σmDn=sucmpm
5 bnj558.19 ηmDn=sucmpωm=sucp
6 bnj558.20 ζiωsucinm=suci
7 bnj558.21 B=yfipredyAR
8 bnj558.22 C=yfppredyAR
9 bnj558.23 K=yGipredyAR
10 bnj558.24 L=yGppredyAR
11 bnj558.25 G=fmC
12 bnj558.28 Could not format ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
13 bnj558.29 Could not format ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
14 bnj558.36 RFrSeAτσGFnn
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 bnj557 RFrSeAτηζGm=L
16 bnj422 RFrSeAτηζηζRFrSeAτ
17 bnj253 ηζRFrSeAτηζRFrSeAτ
18 16 17 bitri RFrSeAτηζηζRFrSeAτ
19 18 simp1bi RFrSeAτηζηζ
20 5 6 9 10 9 10 bnj554 ηζGm=LGsuci=K
21 19 20 syl RFrSeAτηζGm=LGsuci=K
22 15 21 mpbid RFrSeAτηζGsuci=K