Metamath Proof Explorer


Theorem bnj557

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj557.3 D=ω
bnj557.16 G=fmyfppredyAR
bnj557.17 No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
bnj557.18 σmDn=sucmpm
bnj557.19 ηmDn=sucmpωm=sucp
bnj557.20 ζiωsucinm=suci
bnj557.21 B=yfipredyAR
bnj557.22 C=yfppredyAR
bnj557.23 K=yGipredyAR
bnj557.24 L=yGppredyAR
bnj557.25 G=fmC
bnj557.28 No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
bnj557.29 No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
bnj557.36 RFrSeAτσGFnn
Assertion bnj557 RFrSeAτηζGm=L

Proof

Step Hyp Ref Expression
1 bnj557.3 D=ω
2 bnj557.16 G=fmyfppredyAR
3 bnj557.17 Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
4 bnj557.18 σmDn=sucmpm
5 bnj557.19 ηmDn=sucmpωm=sucp
6 bnj557.20 ζiωsucinm=suci
7 bnj557.21 B=yfipredyAR
8 bnj557.22 C=yfppredyAR
9 bnj557.23 K=yGipredyAR
10 bnj557.24 L=yGppredyAR
11 bnj557.25 G=fmC
12 bnj557.28 Could not format ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |-
13 bnj557.29 Could not format ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
14 bnj557.36 RFrSeAτσGFnn
15 3an4anass RFrSeAτηζRFrSeAτηζ
16 4 5 bnj556 ησ
17 16 3anim3i RFrSeAτηRFrSeAτσ
18 vex iV
19 18 bnj216 m=suciim
20 6 19 bnj837 ζim
21 17 20 anim12i RFrSeAτηζRFrSeAτσim
22 15 21 sylbir RFrSeAτηζRFrSeAτσim
23 5 bnj1254 ηm=sucp
24 6 simp3bi ζm=suci
25 bnj551 m=sucpm=sucip=i
26 23 24 25 syl2an ηζp=i
27 26 adantl RFrSeAτηζp=i
28 22 27 jca RFrSeAτηζRFrSeAτσimp=i
29 bnj256 RFrSeAτηζRFrSeAτηζ
30 df-3an RFrSeAτσimp=iRFrSeAτσimp=i
31 28 29 30 3imtr4i RFrSeAτηζRFrSeAτσimp=i
32 12 13 1 2 3 4 8 11 7 9 10 14 bnj553 RFrSeAτσimp=iGm=L
33 31 32 syl RFrSeAτηζGm=L