Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj557.3 | |
|
bnj557.16 | |
||
bnj557.17 | No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |- | ||
bnj557.18 | |
||
bnj557.19 | |
||
bnj557.20 | |
||
bnj557.21 | |
||
bnj557.22 | |
||
bnj557.23 | |
||
bnj557.24 | |
||
bnj557.25 | |
||
bnj557.28 | No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |- | ||
bnj557.29 | No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |- | ||
bnj557.36 | |
||
Assertion | bnj557 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj557.3 | |
|
2 | bnj557.16 | |
|
3 | bnj557.17 | Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |- | |
4 | bnj557.18 | |
|
5 | bnj557.19 | |
|
6 | bnj557.20 | |
|
7 | bnj557.21 | |
|
8 | bnj557.22 | |
|
9 | bnj557.23 | |
|
10 | bnj557.24 | |
|
11 | bnj557.25 | |
|
12 | bnj557.28 | Could not format ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) : No typesetting found for |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) with typecode |- | |
13 | bnj557.29 | Could not format ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |- | |
14 | bnj557.36 | |
|
15 | 3an4anass | |
|
16 | 4 5 | bnj556 | |
17 | 16 | 3anim3i | |
18 | vex | |
|
19 | 18 | bnj216 | |
20 | 6 19 | bnj837 | |
21 | 17 20 | anim12i | |
22 | 15 21 | sylbir | |
23 | 5 | bnj1254 | |
24 | 6 | simp3bi | |
25 | bnj551 | |
|
26 | 23 24 25 | syl2an | |
27 | 26 | adantl | |
28 | 22 27 | jca | |
29 | bnj256 | |
|
30 | df-3an | |
|
31 | 28 29 30 | 3imtr4i | |
32 | 12 13 1 2 3 4 8 11 7 9 10 14 | bnj553 | |
33 | 31 32 | syl | |