| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj557.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
| 2 |
|
bnj557.16 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) |
| 3 |
|
bnj557.17 |
⊢ ( 𝜏 ↔ ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
| 4 |
|
bnj557.18 |
⊢ ( 𝜎 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) |
| 5 |
|
bnj557.19 |
⊢ ( 𝜂 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
| 6 |
|
bnj557.20 |
⊢ ( 𝜁 ↔ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖 ) ) |
| 7 |
|
bnj557.21 |
⊢ 𝐵 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 8 |
|
bnj557.22 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 9 |
|
bnj557.23 |
⊢ 𝐾 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 10 |
|
bnj557.24 |
⊢ 𝐿 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 11 |
|
bnj557.25 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , 𝐶 〉 } ) |
| 12 |
|
bnj557.28 |
⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 13 |
|
bnj557.29 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 14 |
|
bnj557.36 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → 𝐺 Fn 𝑛 ) |
| 15 |
|
3an4anass |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ 𝜁 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) ∧ ( 𝜂 ∧ 𝜁 ) ) ) |
| 16 |
4 5
|
bnj556 |
⊢ ( 𝜂 → 𝜎 ) |
| 17 |
16
|
3anim3i |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ) |
| 18 |
|
vex |
⊢ 𝑖 ∈ V |
| 19 |
18
|
bnj216 |
⊢ ( 𝑚 = suc 𝑖 → 𝑖 ∈ 𝑚 ) |
| 20 |
6 19
|
bnj837 |
⊢ ( 𝜁 → 𝑖 ∈ 𝑚 ) |
| 21 |
17 20
|
anim12i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ∧ 𝜁 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑖 ∈ 𝑚 ) ) |
| 22 |
15 21
|
sylbir |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) ∧ ( 𝜂 ∧ 𝜁 ) ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑖 ∈ 𝑚 ) ) |
| 23 |
5
|
bnj1254 |
⊢ ( 𝜂 → 𝑚 = suc 𝑝 ) |
| 24 |
6
|
simp3bi |
⊢ ( 𝜁 → 𝑚 = suc 𝑖 ) |
| 25 |
|
bnj551 |
⊢ ( ( 𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖 ) → 𝑝 = 𝑖 ) |
| 26 |
23 24 25
|
syl2an |
⊢ ( ( 𝜂 ∧ 𝜁 ) → 𝑝 = 𝑖 ) |
| 27 |
26
|
adantl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) ∧ ( 𝜂 ∧ 𝜁 ) ) → 𝑝 = 𝑖 ) |
| 28 |
22 27
|
jca |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) ∧ ( 𝜂 ∧ 𝜁 ) ) → ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑖 ∈ 𝑚 ) ∧ 𝑝 = 𝑖 ) ) |
| 29 |
|
bnj256 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ) ∧ ( 𝜂 ∧ 𝜁 ) ) ) |
| 30 |
|
df-3an |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖 ) ↔ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑖 ∈ 𝑚 ) ∧ 𝑝 = 𝑖 ) ) |
| 31 |
28 29 30
|
3imtr4i |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖 ) ) |
| 32 |
12 13 1 2 3 4 8 11 7 9 10 14
|
bnj553 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖 ) → ( 𝐺 ‘ 𝑚 ) = 𝐿 ) |
| 33 |
31 32
|
syl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁 ) → ( 𝐺 ‘ 𝑚 ) = 𝐿 ) |