| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj556.18 |
⊢ ( 𝜎 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) |
| 2 |
|
bnj556.19 |
⊢ ( 𝜂 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
| 3 |
|
vex |
⊢ 𝑝 ∈ V |
| 4 |
3
|
bnj216 |
⊢ ( 𝑚 = suc 𝑝 → 𝑝 ∈ 𝑚 ) |
| 5 |
4
|
3anim3i |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑚 = suc 𝑝 ) → ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑚 = suc 𝑝 ) ∧ 𝑝 ∈ ω ) → ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) |
| 7 |
|
bnj258 |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ↔ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑚 = suc 𝑝 ) ∧ 𝑝 ∈ ω ) ) |
| 8 |
2 7
|
bitri |
⊢ ( 𝜂 ↔ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑚 = suc 𝑝 ) ∧ 𝑝 ∈ ω ) ) |
| 9 |
6 8 1
|
3imtr4i |
⊢ ( 𝜂 → 𝜎 ) |