Metamath Proof Explorer


Theorem bnj97

Description: Technical lemma for bnj150 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj96.1 F=predxAR
Assertion bnj97 RFrSeAxAF=predxAR

Proof

Step Hyp Ref Expression
1 bnj96.1 F=predxAR
2 bnj93 RFrSeAxApredxARV
3 0ex V
4 3 bnj519 predxARVFunpredxAR
5 1 funeqi FunFFunpredxAR
6 4 5 sylibr predxARVFunF
7 2 6 syl RFrSeAxAFunF
8 opex predxARV
9 8 snid predxARpredxAR
10 9 1 eleqtrri predxARF
11 funopfv FunFpredxARFF=predxAR
12 7 10 11 mpisyl RFrSeAxAF=predxAR