Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Cosets by ` R `
br2coss
Next ⟩
br1cossres
Metamath Proof Explorer
Ascii
Unicode
Theorem
br2coss
Description:
Cosets by
,
R
binary relation.
(Contributed by
Peter Mazsa
, 25-Aug-2019)
Ref
Expression
Assertion
br2coss
⊢
A
∈
V
∧
B
∈
W
→
A
≀
≀
R
B
↔
A
≀
R
∩
B
≀
R
≠
∅
Proof
Step
Hyp
Ref
Expression
1
brcoss3
⊢
A
∈
V
∧
B
∈
W
→
A
≀
≀
R
B
↔
A
≀
R
-1
∩
B
≀
R
-1
≠
∅
2
cnvcosseq
⊢
≀
R
-1
=
≀
R
3
2
eceq2i
⊢
A
≀
R
-1
=
A
≀
R
4
2
eceq2i
⊢
B
≀
R
-1
=
B
≀
R
5
3
4
ineq12i
⊢
A
≀
R
-1
∩
B
≀
R
-1
=
A
≀
R
∩
B
≀
R
6
5
neeq1i
⊢
A
≀
R
-1
∩
B
≀
R
-1
≠
∅
↔
A
≀
R
∩
B
≀
R
≠
∅
7
1
6
bitrdi
⊢
A
∈
V
∧
B
∈
W
→
A
≀
≀
R
B
↔
A
≀
R
∩
B
≀
R
≠
∅