Metamath Proof Explorer


Theorem br2coss

Description: Cosets by ,R binary relation. (Contributed by Peter Mazsa, 25-Aug-2019)

Ref Expression
Assertion br2coss ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ≀ ≀ 𝑅 𝐵 ↔ ( [ 𝐴 ] ≀ 𝑅 ∩ [ 𝐵 ] ≀ 𝑅 ) ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 brcoss3 ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ≀ ≀ 𝑅 𝐵 ↔ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ) )
2 cnvcosseq 𝑅 = ≀ 𝑅
3 2 eceq2i [ 𝐴 ] 𝑅 = [ 𝐴 ] ≀ 𝑅
4 2 eceq2i [ 𝐵 ] 𝑅 = [ 𝐵 ] ≀ 𝑅
5 3 4 ineq12i ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ( [ 𝐴 ] ≀ 𝑅 ∩ [ 𝐵 ] ≀ 𝑅 )
6 5 neeq1i ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ↔ ( [ 𝐴 ] ≀ 𝑅 ∩ [ 𝐵 ] ≀ 𝑅 ) ≠ ∅ )
7 1 6 bitrdi ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ≀ ≀ 𝑅 𝐵 ↔ ( [ 𝐴 ] ≀ 𝑅 ∩ [ 𝐵 ] ≀ 𝑅 ) ≠ ∅ ) )