Description: Cosets by ,R binary relation. (Contributed by Peter Mazsa, 25-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | br2coss | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≀ ≀ 𝑅 𝐵 ↔ ( [ 𝐴 ] ≀ 𝑅 ∩ [ 𝐵 ] ≀ 𝑅 ) ≠ ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcoss3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≀ ≀ 𝑅 𝐵 ↔ ( [ 𝐴 ] ◡ ≀ 𝑅 ∩ [ 𝐵 ] ◡ ≀ 𝑅 ) ≠ ∅ ) ) | |
2 | cnvcosseq | ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 | |
3 | 2 | eceq2i | ⊢ [ 𝐴 ] ◡ ≀ 𝑅 = [ 𝐴 ] ≀ 𝑅 |
4 | 2 | eceq2i | ⊢ [ 𝐵 ] ◡ ≀ 𝑅 = [ 𝐵 ] ≀ 𝑅 |
5 | 3 4 | ineq12i | ⊢ ( [ 𝐴 ] ◡ ≀ 𝑅 ∩ [ 𝐵 ] ◡ ≀ 𝑅 ) = ( [ 𝐴 ] ≀ 𝑅 ∩ [ 𝐵 ] ≀ 𝑅 ) |
6 | 5 | neeq1i | ⊢ ( ( [ 𝐴 ] ◡ ≀ 𝑅 ∩ [ 𝐵 ] ◡ ≀ 𝑅 ) ≠ ∅ ↔ ( [ 𝐴 ] ≀ 𝑅 ∩ [ 𝐵 ] ≀ 𝑅 ) ≠ ∅ ) |
7 | 1 6 | bitrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≀ ≀ 𝑅 𝐵 ↔ ( [ 𝐴 ] ≀ 𝑅 ∩ [ 𝐵 ] ≀ 𝑅 ) ≠ ∅ ) ) |