Step |
Hyp |
Ref |
Expression |
1 |
|
brcoss3 |
|- ( ( A e. V /\ B e. W ) -> ( A ,~ ,~ R B <-> ( [ A ] `' ,~ R i^i [ B ] `' ,~ R ) =/= (/) ) ) |
2 |
|
cnvcosseq |
|- `' ,~ R = ,~ R |
3 |
2
|
eceq2i |
|- [ A ] `' ,~ R = [ A ] ,~ R |
4 |
2
|
eceq2i |
|- [ B ] `' ,~ R = [ B ] ,~ R |
5 |
3 4
|
ineq12i |
|- ( [ A ] `' ,~ R i^i [ B ] `' ,~ R ) = ( [ A ] ,~ R i^i [ B ] ,~ R ) |
6 |
5
|
neeq1i |
|- ( ( [ A ] `' ,~ R i^i [ B ] `' ,~ R ) =/= (/) <-> ( [ A ] ,~ R i^i [ B ] ,~ R ) =/= (/) ) |
7 |
1 6
|
bitrdi |
|- ( ( A e. V /\ B e. W ) -> ( A ,~ ,~ R B <-> ( [ A ] ,~ R i^i [ B ] ,~ R ) =/= (/) ) ) |