Description: The converse of cosets by R are cosets by R . (Contributed by Peter Mazsa, 3-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvcosseq | |- `' ,~ R = ,~ R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcosscnvcoss | |- ( ( x e. _V /\ y e. _V ) -> ( x ,~ R y <-> y ,~ R x ) ) |
|
2 | 1 | el2v | |- ( x ,~ R y <-> y ,~ R x ) |
3 | 2 | biimpi | |- ( x ,~ R y -> y ,~ R x ) |
4 | 3 | gen2 | |- A. x A. y ( x ,~ R y -> y ,~ R x ) |
5 | cnvsym | |- ( `' ,~ R C_ ,~ R <-> A. x A. y ( x ,~ R y -> y ,~ R x ) ) |
|
6 | 4 5 | mpbir | |- `' ,~ R C_ ,~ R |
7 | relcoss | |- Rel ,~ R |
|
8 | relcnveq | |- ( Rel ,~ R -> ( `' ,~ R C_ ,~ R <-> `' ,~ R = ,~ R ) ) |
|
9 | 7 8 | ax-mp | |- ( `' ,~ R C_ ,~ R <-> `' ,~ R = ,~ R ) |
10 | 6 9 | mpbi | |- `' ,~ R = ,~ R |