Metamath Proof Explorer


Theorem cnvcosseq

Description: The converse of cosets by R are cosets by R . (Contributed by Peter Mazsa, 3-May-2019)

Ref Expression
Assertion cnvcosseq
|- `' ,~ R = ,~ R

Proof

Step Hyp Ref Expression
1 brcosscnvcoss
 |-  ( ( x e. _V /\ y e. _V ) -> ( x ,~ R y <-> y ,~ R x ) )
2 1 el2v
 |-  ( x ,~ R y <-> y ,~ R x )
3 2 biimpi
 |-  ( x ,~ R y -> y ,~ R x )
4 3 gen2
 |-  A. x A. y ( x ,~ R y -> y ,~ R x )
5 cnvsym
 |-  ( `' ,~ R C_ ,~ R <-> A. x A. y ( x ,~ R y -> y ,~ R x ) )
6 4 5 mpbir
 |-  `' ,~ R C_ ,~ R
7 relcoss
 |-  Rel ,~ R
8 relcnveq
 |-  ( Rel ,~ R -> ( `' ,~ R C_ ,~ R <-> `' ,~ R = ,~ R ) )
9 7 8 ax-mp
 |-  ( `' ,~ R C_ ,~ R <-> `' ,~ R = ,~ R )
10 6 9 mpbi
 |-  `' ,~ R = ,~ R