Description: The converse of cosets by R are cosets by R . (Contributed by Peter Mazsa, 3-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvcosseq | ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcosscnvcoss | ⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ≀ 𝑅 𝑦 ↔ 𝑦 ≀ 𝑅 𝑥 ) ) | |
| 2 | 1 | el2v | ⊢ ( 𝑥 ≀ 𝑅 𝑦 ↔ 𝑦 ≀ 𝑅 𝑥 ) |
| 3 | 2 | biimpi | ⊢ ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) |
| 4 | 3 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) |
| 5 | cnvsym | ⊢ ( ◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) ) | |
| 6 | 4 5 | mpbir | ⊢ ◡ ≀ 𝑅 ⊆ ≀ 𝑅 |
| 7 | relcoss | ⊢ Rel ≀ 𝑅 | |
| 8 | relcnveq | ⊢ ( Rel ≀ 𝑅 → ( ◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ◡ ≀ 𝑅 = ≀ 𝑅 ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( ◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ◡ ≀ 𝑅 = ≀ 𝑅 ) |
| 10 | 6 9 | mpbi | ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 |