Metamath Proof Explorer


Theorem cnvcosseq

Description: The converse of cosets by R are cosets by R . (Contributed by Peter Mazsa, 3-May-2019)

Ref Expression
Assertion cnvcosseq 𝑅 = ≀ 𝑅

Proof

Step Hyp Ref Expression
1 brcosscnvcoss ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥𝑅 𝑦𝑦𝑅 𝑥 ) )
2 1 el2v ( 𝑥𝑅 𝑦𝑦𝑅 𝑥 )
3 2 biimpi ( 𝑥𝑅 𝑦𝑦𝑅 𝑥 )
4 3 gen2 𝑥𝑦 ( 𝑥𝑅 𝑦𝑦𝑅 𝑥 )
5 cnvsym ( 𝑅 ⊆ ≀ 𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥𝑅 𝑦𝑦𝑅 𝑥 ) )
6 4 5 mpbir 𝑅 ⊆ ≀ 𝑅
7 relcoss Rel ≀ 𝑅
8 relcnveq ( Rel ≀ 𝑅 → ( 𝑅 ⊆ ≀ 𝑅𝑅 = ≀ 𝑅 ) )
9 7 8 ax-mp ( 𝑅 ⊆ ≀ 𝑅𝑅 = ≀ 𝑅 )
10 6 9 mpbi 𝑅 = ≀ 𝑅