Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 23-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relcnveq | ⊢ ( Rel 𝑅 → ( ◡ 𝑅 ⊆ 𝑅 ↔ ◡ 𝑅 = 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnveq3 | ⊢ ( Rel 𝑅 → ( 𝑅 = ◡ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) | |
| 2 | cnvsym | ⊢ ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) | |
| 3 | 1 2 | bitr4di | ⊢ ( Rel 𝑅 → ( 𝑅 = ◡ 𝑅 ↔ ◡ 𝑅 ⊆ 𝑅 ) ) |
| 4 | eqcom | ⊢ ( 𝑅 = ◡ 𝑅 ↔ ◡ 𝑅 = 𝑅 ) | |
| 5 | 3 4 | bitr3di | ⊢ ( Rel 𝑅 → ( ◡ 𝑅 ⊆ 𝑅 ↔ ◡ 𝑅 = 𝑅 ) ) |