Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
relcnveq
Next ⟩
relcnveq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
relcnveq
Description:
Two ways of saying a relation is symmetric.
(Contributed by
Peter Mazsa
, 23-Aug-2018)
Ref
Expression
Assertion
relcnveq
⊢
Rel
⁡
R
→
R
-1
⊆
R
↔
R
-1
=
R
Proof
Step
Hyp
Ref
Expression
1
relcnveq3
⊢
Rel
⁡
R
→
R
=
R
-1
↔
∀
x
∀
y
x
R
y
→
y
R
x
2
cnvsym
⊢
R
-1
⊆
R
↔
∀
x
∀
y
x
R
y
→
y
R
x
3
1
2
bitr4di
⊢
Rel
⁡
R
→
R
=
R
-1
↔
R
-1
⊆
R
4
eqcom
⊢
R
=
R
-1
↔
R
-1
=
R
5
3
4
bitr3di
⊢
Rel
⁡
R
→
R
-1
⊆
R
↔
R
-1
=
R