Metamath Proof Explorer


Theorem relcnveq2

Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 28-Apr-2019)

Ref Expression
Assertion relcnveq2 ( Rel 𝑅 → ( 𝑅 = 𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 cnvsym ( 𝑅𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
2 1 a1i ( Rel 𝑅 → ( 𝑅𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )
3 dfrel2 ( Rel 𝑅 𝑅 = 𝑅 )
4 3 biimpi ( Rel 𝑅 𝑅 = 𝑅 )
5 4 sseq1d ( Rel 𝑅 → ( 𝑅 𝑅𝑅 𝑅 ) )
6 cnvsym ( 𝑅 𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
7 5 6 bitr3di ( Rel 𝑅 → ( 𝑅 𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )
8 relbrcnvg ( Rel 𝑅 → ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
9 relbrcnvg ( Rel 𝑅 → ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 ) )
10 8 9 imbi12d ( Rel 𝑅 → ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ↔ ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 ) ) )
11 10 2albidv ( Rel 𝑅 → ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥𝑦 ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 ) ) )
12 7 11 bitrd ( Rel 𝑅 → ( 𝑅 𝑅 ↔ ∀ 𝑥𝑦 ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 ) ) )
13 2 12 anbi12d ( Rel 𝑅 → ( ( 𝑅𝑅𝑅 𝑅 ) ↔ ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ∧ ∀ 𝑥𝑦 ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 ) ) ) )
14 eqss ( 𝑅 = 𝑅 ↔ ( 𝑅𝑅𝑅 𝑅 ) )
15 2albiim ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ↔ ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ∧ ∀ 𝑥𝑦 ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 ) ) )
16 13 14 15 3bitr4g ( Rel 𝑅 → ( 𝑅 = 𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )