| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnvsym |
⊢ ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) |
| 2 |
1
|
a1i |
⊢ ( Rel 𝑅 → ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 3 |
|
dfrel2 |
⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) |
| 4 |
3
|
biimpi |
⊢ ( Rel 𝑅 → ◡ ◡ 𝑅 = 𝑅 ) |
| 5 |
4
|
sseq1d |
⊢ ( Rel 𝑅 → ( ◡ ◡ 𝑅 ⊆ ◡ 𝑅 ↔ 𝑅 ⊆ ◡ 𝑅 ) ) |
| 6 |
|
cnvsym |
⊢ ( ◡ ◡ 𝑅 ⊆ ◡ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ◡ 𝑅 𝑦 → 𝑦 ◡ 𝑅 𝑥 ) ) |
| 7 |
5 6
|
bitr3di |
⊢ ( Rel 𝑅 → ( 𝑅 ⊆ ◡ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ◡ 𝑅 𝑦 → 𝑦 ◡ 𝑅 𝑥 ) ) ) |
| 8 |
|
relbrcnvg |
⊢ ( Rel 𝑅 → ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) |
| 9 |
|
relbrcnvg |
⊢ ( Rel 𝑅 → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) |
| 10 |
8 9
|
imbi12d |
⊢ ( Rel 𝑅 → ( ( 𝑥 ◡ 𝑅 𝑦 → 𝑦 ◡ 𝑅 𝑥 ) ↔ ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) |
| 11 |
10
|
2albidv |
⊢ ( Rel 𝑅 → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ◡ 𝑅 𝑦 → 𝑦 ◡ 𝑅 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) |
| 12 |
7 11
|
bitrd |
⊢ ( Rel 𝑅 → ( 𝑅 ⊆ ◡ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) |
| 13 |
2 12
|
anbi12d |
⊢ ( Rel 𝑅 → ( ( ◡ 𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡ 𝑅 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) ) |
| 14 |
|
eqss |
⊢ ( ◡ 𝑅 = 𝑅 ↔ ( ◡ 𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡ 𝑅 ) ) |
| 15 |
|
2albiim |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) |
| 16 |
13 14 15
|
3bitr4g |
⊢ ( Rel 𝑅 → ( ◡ 𝑅 = 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) |