Metamath Proof Explorer


Theorem relcnveq4

Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 28-Apr-2019)

Ref Expression
Assertion relcnveq4 ( Rel 𝑅 → ( 𝑅𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 relcnveq ( Rel 𝑅 → ( 𝑅𝑅 𝑅 = 𝑅 ) )
2 relcnveq2 ( Rel 𝑅 → ( 𝑅 = 𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )
3 1 2 bitrd ( Rel 𝑅 → ( 𝑅𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )