Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 28-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | relcnveq4 | ⊢ ( Rel 𝑅 → ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnveq | ⊢ ( Rel 𝑅 → ( ◡ 𝑅 ⊆ 𝑅 ↔ ◡ 𝑅 = 𝑅 ) ) | |
2 | relcnveq2 | ⊢ ( Rel 𝑅 → ( ◡ 𝑅 = 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) | |
3 | 1 2 | bitrd | ⊢ ( Rel 𝑅 → ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) |