Metamath Proof Explorer


Theorem relcnveq4

Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 28-Apr-2019)

Ref Expression
Assertion relcnveq4 Rel R R -1 R x y x R y y R x

Proof

Step Hyp Ref Expression
1 relcnveq Rel R R -1 R R -1 = R
2 relcnveq2 Rel R R -1 = R x y x R y y R x
3 1 2 bitrd Rel R R -1 R x y x R y y R x