Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
relcnveq4
Next ⟩
qsresid
Metamath Proof Explorer
Ascii
Unicode
Theorem
relcnveq4
Description:
Two ways of saying a relation is symmetric.
(Contributed by
Peter Mazsa
, 28-Apr-2019)
Ref
Expression
Assertion
relcnveq4
⊢
Rel
⁡
R
→
R
-1
⊆
R
↔
∀
x
∀
y
x
R
y
↔
y
R
x
Proof
Step
Hyp
Ref
Expression
1
relcnveq
⊢
Rel
⁡
R
→
R
-1
⊆
R
↔
R
-1
=
R
2
relcnveq2
⊢
Rel
⁡
R
→
R
-1
=
R
↔
∀
x
∀
y
x
R
y
↔
y
R
x
3
1
2
bitrd
⊢
Rel
⁡
R
→
R
-1
⊆
R
↔
∀
x
∀
y
x
R
y
↔
y
R
x