Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 28-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relcnveq4 | |- ( Rel R -> ( `' R C_ R <-> A. x A. y ( x R y <-> y R x ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relcnveq | |- ( Rel R -> ( `' R C_ R <-> `' R = R ) ) | |
| 2 | relcnveq2 | |- ( Rel R -> ( `' R = R <-> A. x A. y ( x R y <-> y R x ) ) ) | |
| 3 | 1 2 | bitrd | |- ( Rel R -> ( `' R C_ R <-> A. x A. y ( x R y <-> y R x ) ) ) |