Metamath Proof Explorer


Theorem brabg

Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses opelopabg.1 x=Aφψ
opelopabg.2 y=Bψχ
brabg.5 R=xy|φ
Assertion brabg ACBDARBχ

Proof

Step Hyp Ref Expression
1 opelopabg.1 x=Aφψ
2 opelopabg.2 y=Bψχ
3 brabg.5 R=xy|φ
4 1 2 sylan9bb x=Ay=Bφχ
5 4 3 brabga ACBDARBχ