Metamath Proof Explorer


Theorem brabg

Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses opelopabg.1 x = A φ ψ
opelopabg.2 y = B ψ χ
brabg.5 R = x y | φ
Assertion brabg A C B D A R B χ

Proof

Step Hyp Ref Expression
1 opelopabg.1 x = A φ ψ
2 opelopabg.2 y = B ψ χ
3 brabg.5 R = x y | φ
4 1 2 sylan9bb x = A y = B φ χ
5 4 3 brabga A C B D A R B χ