Metamath Proof Explorer


Theorem brabsb

Description: The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008)

Ref Expression
Hypothesis brabsb.1 R=xy|φ
Assertion brabsb ARB[˙A/x]˙[˙B/y]˙φ

Proof

Step Hyp Ref Expression
1 brabsb.1 R=xy|φ
2 df-br ARBABR
3 1 eleq2i ABRABxy|φ
4 opelopabsb ABxy|φ[˙A/x]˙[˙B/y]˙φ
5 2 3 4 3bitri ARB[˙A/x]˙[˙B/y]˙φ