Metamath Proof Explorer


Theorem bracnvbra

Description: The bra of the converse bra of a continuous linear functional. (Contributed by NM, 31-May-2006) (New usage is discouraged.)

Ref Expression
Assertion bracnvbra TLinFnContFnbrabra-1T=T

Proof

Step Hyp Ref Expression
1 bra11 bra:1-1 ontoLinFnContFn
2 f1ocnvfv2 bra:1-1 ontoLinFnContFnTLinFnContFnbrabra-1T=T
3 1 2 mpan TLinFnContFnbrabra-1T=T