Metamath Proof Explorer


Theorem bracnlnval

Description: The vector that a continuous linear functional is the bra of. (Contributed by NM, 26-May-2006) (New usage is discouraged.)

Ref Expression
Assertion bracnlnval TLinFnContFnT=braιy|xTx=xihy

Proof

Step Hyp Ref Expression
1 cnvbraval TLinFnContFnbra-1T=ιy|xTx=xihy
2 cnvbracl TLinFnContFnbra-1T
3 1 2 eqeltrrd TLinFnContFnιy|xTx=xihy
4 bra11 bra:1-1 ontoLinFnContFn
5 f1ocnvfvb bra:1-1 ontoLinFnContFnιy|xTx=xihyTLinFnContFnbraιy|xTx=xihy=Tbra-1T=ιy|xTx=xihy
6 4 5 mp3an1 ιy|xTx=xihyTLinFnContFnbraιy|xTx=xihy=Tbra-1T=ιy|xTx=xihy
7 3 6 mpancom TLinFnContFnbraιy|xTx=xihy=Tbra-1T=ιy|xTx=xihy
8 1 7 mpbird TLinFnContFnbraιy|xTx=xihy=T
9 8 eqcomd TLinFnContFnT=braιy|xTx=xihy