Metamath Proof Explorer


Theorem brcnvep

Description: The converse of the binary epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018)

Ref Expression
Assertion brcnvep AVAE-1BBA

Proof

Step Hyp Ref Expression
1 rele RelE
2 1 relbrcnv AE-1BBEA
3 epelg AVBEABA
4 2 3 bitrid AVAE-1BBA