Metamath Proof Explorer


Theorem brcnvep

Description: The converse of the binary epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018)

Ref Expression
Assertion brcnvep A V A E -1 B B A

Proof

Step Hyp Ref Expression
1 rele Rel E
2 1 relbrcnv A E -1 B B E A
3 epelg A V B E A B A
4 2 3 syl5bb A V A E -1 B B A