Metamath Proof Explorer


Theorem brcoss3

Description: Alternate form of the A and B are cosets by R binary relation. (Contributed by Peter Mazsa, 26-Mar-2019)

Ref Expression
Assertion brcoss3 A V B W A R B A R -1 B R -1

Proof

Step Hyp Ref Expression
1 brcnvg A V u V A R -1 u u R A
2 1 elvd A V A R -1 u u R A
3 brcnvg B W u V B R -1 u u R B
4 3 elvd B W B R -1 u u R B
5 2 4 bi2anan9 A V B W A R -1 u B R -1 u u R A u R B
6 5 exbidv A V B W u A R -1 u B R -1 u u u R A u R B
7 ecinn0 A V B W A R -1 B R -1 u A R -1 u B R -1 u
8 brcoss A V B W A R B u u R A u R B
9 6 7 8 3bitr4rd A V B W A R B A R -1 B R -1