Description: Binary relation on a quotient set. Lemma for real number construction. Eliminates antecedent from last hypothesis. (Contributed by NM, 13-Feb-1996) (Revised by AV, 12-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | brecop2.1 | |
|
brecop2.2 | |
||
brecop2.3 | |
||
brecop2.4 | |
||
brecop2.5 | |
||
brecop2.6 | |
||
brecop2.7 | |
||
Assertion | brecop2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brecop2.1 | |
|
2 | brecop2.2 | |
|
3 | brecop2.3 | |
|
4 | brecop2.4 | |
|
5 | brecop2.5 | |
|
6 | brecop2.6 | |
|
7 | brecop2.7 | |
|
8 | 3 | brel | |
9 | ecelqsdm | |
|
10 | 1 9 | mpan | |
11 | 10 2 | eleq2s | |
12 | opelxp | |
|
13 | 11 12 | sylib | |
14 | ecelqsdm | |
|
15 | 1 14 | mpan | |
16 | 15 2 | eleq2s | |
17 | opelxp | |
|
18 | 16 17 | sylib | |
19 | 13 18 | anim12i | |
20 | 8 19 | syl | |
21 | 4 | brel | |
22 | 6 5 | ndmovrcl | |
23 | 6 5 | ndmovrcl | |
24 | 22 23 | anim12i | |
25 | 21 24 | syl | |
26 | an42 | |
|
27 | 25 26 | sylib | |
28 | 20 27 7 | pm5.21nii | |