Metamath Proof Explorer


Theorem brecop2

Description: Binary relation on a quotient set. Lemma for real number construction. Eliminates antecedent from last hypothesis. (Contributed by NM, 13-Feb-1996) (Revised by AV, 12-Jul-2022)

Ref Expression
Hypotheses brecop2.1 dom˙=G×G
brecop2.2 H=G×G/˙
brecop2.3 RH×H
brecop2.4 ˙G×G
brecop2.5 ¬G
brecop2.6 dom+˙=G×G
brecop2.7 AGBGCGDGAB˙RCD˙A+˙D˙B+˙C
Assertion brecop2 AB˙RCD˙A+˙D˙B+˙C

Proof

Step Hyp Ref Expression
1 brecop2.1 dom˙=G×G
2 brecop2.2 H=G×G/˙
3 brecop2.3 RH×H
4 brecop2.4 ˙G×G
5 brecop2.5 ¬G
6 brecop2.6 dom+˙=G×G
7 brecop2.7 AGBGCGDGAB˙RCD˙A+˙D˙B+˙C
8 3 brel AB˙RCD˙AB˙HCD˙H
9 ecelqsdm dom˙=G×GAB˙G×G/˙ABG×G
10 1 9 mpan AB˙G×G/˙ABG×G
11 10 2 eleq2s AB˙HABG×G
12 opelxp ABG×GAGBG
13 11 12 sylib AB˙HAGBG
14 ecelqsdm dom˙=G×GCD˙G×G/˙CDG×G
15 1 14 mpan CD˙G×G/˙CDG×G
16 15 2 eleq2s CD˙HCDG×G
17 opelxp CDG×GCGDG
18 16 17 sylib CD˙HCGDG
19 13 18 anim12i AB˙HCD˙HAGBGCGDG
20 8 19 syl AB˙RCD˙AGBGCGDG
21 4 brel A+˙D˙B+˙CA+˙DGB+˙CG
22 6 5 ndmovrcl A+˙DGAGDG
23 6 5 ndmovrcl B+˙CGBGCG
24 22 23 anim12i A+˙DGB+˙CGAGDGBGCG
25 21 24 syl A+˙D˙B+˙CAGDGBGCG
26 an42 AGDGBGCGAGBGCGDG
27 25 26 sylib A+˙D˙B+˙CAGBGCGDG
28 20 27 7 pm5.21nii AB˙RCD˙A+˙D˙B+˙C