Metamath Proof Explorer


Theorem eroveu

Description: Lemma for erov and eroprf . (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses eropr.1 J=A/R
eropr.2 K=B/S
eropr.3 φTZ
eropr.4 φRErU
eropr.5 φSErV
eropr.6 φTErW
eropr.7 φAU
eropr.8 φBV
eropr.9 φCW
eropr.10 φ+˙:A×BC
eropr.11 φrAsAtBuBrRstSur+˙tTs+˙u
Assertion eroveu φXJYK∃!zpAqBX=pRY=qSz=p+˙qT

Proof

Step Hyp Ref Expression
1 eropr.1 J=A/R
2 eropr.2 K=B/S
3 eropr.3 φTZ
4 eropr.4 φRErU
5 eropr.5 φSErV
6 eropr.6 φTErW
7 eropr.7 φAU
8 eropr.8 φBV
9 eropr.9 φCW
10 eropr.10 φ+˙:A×BC
11 eropr.11 φrAsAtBuBrRstSur+˙tTs+˙u
12 elqsi XA/RpAX=pR
13 12 1 eleq2s XJpAX=pR
14 elqsi YB/SqBY=qS
15 14 2 eleq2s YKqBY=qS
16 13 15 anim12i XJYKpAX=pRqBY=qS
17 16 adantl φXJYKpAX=pRqBY=qS
18 reeanv pAqBX=pRY=qSpAX=pRqBY=qS
19 17 18 sylibr φXJYKpAqBX=pRY=qS
20 3 adantr φXJYKTZ
21 ecexg TZp+˙qTV
22 elisset p+˙qTVzz=p+˙qT
23 20 21 22 3syl φXJYKzz=p+˙qT
24 23 biantrud φXJYKX=pRY=qSX=pRY=qSzz=p+˙qT
25 24 2rexbidv φXJYKpAqBX=pRY=qSpAqBX=pRY=qSzz=p+˙qT
26 19 25 mpbid φXJYKpAqBX=pRY=qSzz=p+˙qT
27 19.42v zX=pRY=qSz=p+˙qTX=pRY=qSzz=p+˙qT
28 27 bicomi X=pRY=qSzz=p+˙qTzX=pRY=qSz=p+˙qT
29 28 rexbii qBX=pRY=qSzz=p+˙qTqBzX=pRY=qSz=p+˙qT
30 rexcom4 qBzX=pRY=qSz=p+˙qTzqBX=pRY=qSz=p+˙qT
31 29 30 bitri qBX=pRY=qSzz=p+˙qTzqBX=pRY=qSz=p+˙qT
32 31 rexbii pAqBX=pRY=qSzz=p+˙qTpAzqBX=pRY=qSz=p+˙qT
33 rexcom4 pAzqBX=pRY=qSz=p+˙qTzpAqBX=pRY=qSz=p+˙qT
34 32 33 bitri pAqBX=pRY=qSzz=p+˙qTzpAqBX=pRY=qSz=p+˙qT
35 26 34 sylib φXJYKzpAqBX=pRY=qSz=p+˙qT
36 reeanv rAsAtBX=rRY=tSz=r+˙tTuBX=sRY=uSw=s+˙uTrAtBX=rRY=tSz=r+˙tTsAuBX=sRY=uSw=s+˙uT
37 eceq1 p=rpR=rR
38 37 eqeq2d p=rX=pRX=rR
39 38 anbi1d p=rX=pRY=qSX=rRY=qS
40 oveq1 p=rp+˙q=r+˙q
41 40 eceq1d p=rp+˙qT=r+˙qT
42 41 eqeq2d p=rz=p+˙qTz=r+˙qT
43 39 42 anbi12d p=rX=pRY=qSz=p+˙qTX=rRY=qSz=r+˙qT
44 eceq1 q=tqS=tS
45 44 eqeq2d q=tY=qSY=tS
46 45 anbi2d q=tX=rRY=qSX=rRY=tS
47 oveq2 q=tr+˙q=r+˙t
48 47 eceq1d q=tr+˙qT=r+˙tT
49 48 eqeq2d q=tz=r+˙qTz=r+˙tT
50 46 49 anbi12d q=tX=rRY=qSz=r+˙qTX=rRY=tSz=r+˙tT
51 43 50 cbvrex2vw pAqBX=pRY=qSz=p+˙qTrAtBX=rRY=tSz=r+˙tT
52 eceq1 p=spR=sR
53 52 eqeq2d p=sX=pRX=sR
54 53 anbi1d p=sX=pRY=qSX=sRY=qS
55 oveq1 p=sp+˙q=s+˙q
56 55 eceq1d p=sp+˙qT=s+˙qT
57 56 eqeq2d p=sw=p+˙qTw=s+˙qT
58 54 57 anbi12d p=sX=pRY=qSw=p+˙qTX=sRY=qSw=s+˙qT
59 eceq1 q=uqS=uS
60 59 eqeq2d q=uY=qSY=uS
61 60 anbi2d q=uX=sRY=qSX=sRY=uS
62 oveq2 q=us+˙q=s+˙u
63 62 eceq1d q=us+˙qT=s+˙uT
64 63 eqeq2d q=uw=s+˙qTw=s+˙uT
65 61 64 anbi12d q=uX=sRY=qSw=s+˙qTX=sRY=uSw=s+˙uT
66 58 65 cbvrex2vw pAqBX=pRY=qSw=p+˙qTsAuBX=sRY=uSw=s+˙uT
67 51 66 anbi12i pAqBX=pRY=qSz=p+˙qTpAqBX=pRY=qSw=p+˙qTrAtBX=rRY=tSz=r+˙tTsAuBX=sRY=uSw=s+˙uT
68 36 67 bitr4i rAsAtBX=rRY=tSz=r+˙tTuBX=sRY=uSw=s+˙uTpAqBX=pRY=qSz=p+˙qTpAqBX=pRY=qSw=p+˙qT
69 reeanv tBuBX=rRY=tSz=r+˙tTX=sRY=uSw=s+˙uTtBX=rRY=tSz=r+˙tTuBX=sRY=uSw=s+˙uT
70 4 adantr φrAsAtBuBRErU
71 7 adantr φrAsAtBuBAU
72 simprll φrAsAtBuBrA
73 71 72 sseldd φrAsAtBuBrU
74 70 73 erth φrAsAtBuBrRsrR=sR
75 5 adantr φrAsAtBuBSErV
76 8 adantr φrAsAtBuBBV
77 simprrl φrAsAtBuBtB
78 76 77 sseldd φrAsAtBuBtV
79 75 78 erth φrAsAtBuBtSutS=uS
80 74 79 anbi12d φrAsAtBuBrRstSurR=sRtS=uS
81 6 adantr φrAsAtBuBTErW
82 9 adantr φrAsAtBuBCW
83 10 adantr φrAsAtBuB+˙:A×BC
84 83 72 77 fovcdmd φrAsAtBuBr+˙tC
85 82 84 sseldd φrAsAtBuBr+˙tW
86 81 85 erth φrAsAtBuBr+˙tTs+˙ur+˙tT=s+˙uT
87 11 80 86 3imtr3d φrAsAtBuBrR=sRtS=uSr+˙tT=s+˙uT
88 eqeq2 w=s+˙uTr+˙tT=wr+˙tT=s+˙uT
89 88 biimprcd r+˙tT=s+˙uTw=s+˙uTr+˙tT=w
90 87 89 syl6 φrAsAtBuBrR=sRtS=uSw=s+˙uTr+˙tT=w
91 90 impd φrAsAtBuBrR=sRtS=uSw=s+˙uTr+˙tT=w
92 eqeq1 X=rRX=sRrR=sR
93 eqeq1 Y=tSY=uStS=uS
94 92 93 bi2anan9 X=rRY=tSX=sRY=uSrR=sRtS=uS
95 94 anbi1d X=rRY=tSX=sRY=uSw=s+˙uTrR=sRtS=uSw=s+˙uT
96 95 adantr X=rRY=tSz=r+˙tTX=sRY=uSw=s+˙uTrR=sRtS=uSw=s+˙uT
97 eqeq1 z=r+˙tTz=wr+˙tT=w
98 97 adantl X=rRY=tSz=r+˙tTz=wr+˙tT=w
99 96 98 imbi12d X=rRY=tSz=r+˙tTX=sRY=uSw=s+˙uTz=wrR=sRtS=uSw=s+˙uTr+˙tT=w
100 91 99 syl5ibrcom φrAsAtBuBX=rRY=tSz=r+˙tTX=sRY=uSw=s+˙uTz=w
101 100 impd φrAsAtBuBX=rRY=tSz=r+˙tTX=sRY=uSw=s+˙uTz=w
102 101 anassrs φrAsAtBuBX=rRY=tSz=r+˙tTX=sRY=uSw=s+˙uTz=w
103 102 rexlimdvva φrAsAtBuBX=rRY=tSz=r+˙tTX=sRY=uSw=s+˙uTz=w
104 69 103 biimtrrid φrAsAtBX=rRY=tSz=r+˙tTuBX=sRY=uSw=s+˙uTz=w
105 104 rexlimdvva φrAsAtBX=rRY=tSz=r+˙tTuBX=sRY=uSw=s+˙uTz=w
106 68 105 biimtrrid φpAqBX=pRY=qSz=p+˙qTpAqBX=pRY=qSw=p+˙qTz=w
107 106 adantr φXJYKpAqBX=pRY=qSz=p+˙qTpAqBX=pRY=qSw=p+˙qTz=w
108 107 alrimivv φXJYKzwpAqBX=pRY=qSz=p+˙qTpAqBX=pRY=qSw=p+˙qTz=w
109 eqeq1 z=wz=p+˙qTw=p+˙qT
110 109 anbi2d z=wX=pRY=qSz=p+˙qTX=pRY=qSw=p+˙qT
111 110 2rexbidv z=wpAqBX=pRY=qSz=p+˙qTpAqBX=pRY=qSw=p+˙qT
112 111 eu4 ∃!zpAqBX=pRY=qSz=p+˙qTzpAqBX=pRY=qSz=p+˙qTzwpAqBX=pRY=qSz=p+˙qTpAqBX=pRY=qSw=p+˙qTz=w
113 35 108 112 sylanbrc φXJYK∃!zpAqBX=pRY=qSz=p+˙qT