| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eropr.1 |  | 
						
							| 2 |  | eropr.2 |  | 
						
							| 3 |  | eropr.3 |  | 
						
							| 4 |  | eropr.4 |  | 
						
							| 5 |  | eropr.5 |  | 
						
							| 6 |  | eropr.6 |  | 
						
							| 7 |  | eropr.7 |  | 
						
							| 8 |  | eropr.8 |  | 
						
							| 9 |  | eropr.9 |  | 
						
							| 10 |  | eropr.10 |  | 
						
							| 11 |  | eropr.11 |  | 
						
							| 12 |  | elqsi |  | 
						
							| 13 | 12 1 | eleq2s |  | 
						
							| 14 |  | elqsi |  | 
						
							| 15 | 14 2 | eleq2s |  | 
						
							| 16 | 13 15 | anim12i |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 |  | reeanv |  | 
						
							| 19 | 17 18 | sylibr |  | 
						
							| 20 | 3 | adantr |  | 
						
							| 21 |  | ecexg |  | 
						
							| 22 |  | elisset |  | 
						
							| 23 | 20 21 22 | 3syl |  | 
						
							| 24 | 23 | biantrud |  | 
						
							| 25 | 24 | 2rexbidv |  | 
						
							| 26 | 19 25 | mpbid |  | 
						
							| 27 |  | 19.42v |  | 
						
							| 28 | 27 | bicomi |  | 
						
							| 29 | 28 | rexbii |  | 
						
							| 30 |  | rexcom4 |  | 
						
							| 31 | 29 30 | bitri |  | 
						
							| 32 | 31 | rexbii |  | 
						
							| 33 |  | rexcom4 |  | 
						
							| 34 | 32 33 | bitri |  | 
						
							| 35 | 26 34 | sylib |  | 
						
							| 36 |  | reeanv |  | 
						
							| 37 |  | eceq1 |  | 
						
							| 38 | 37 | eqeq2d |  | 
						
							| 39 | 38 | anbi1d |  | 
						
							| 40 |  | oveq1 |  | 
						
							| 41 | 40 | eceq1d |  | 
						
							| 42 | 41 | eqeq2d |  | 
						
							| 43 | 39 42 | anbi12d |  | 
						
							| 44 |  | eceq1 |  | 
						
							| 45 | 44 | eqeq2d |  | 
						
							| 46 | 45 | anbi2d |  | 
						
							| 47 |  | oveq2 |  | 
						
							| 48 | 47 | eceq1d |  | 
						
							| 49 | 48 | eqeq2d |  | 
						
							| 50 | 46 49 | anbi12d |  | 
						
							| 51 | 43 50 | cbvrex2vw |  | 
						
							| 52 |  | eceq1 |  | 
						
							| 53 | 52 | eqeq2d |  | 
						
							| 54 | 53 | anbi1d |  | 
						
							| 55 |  | oveq1 |  | 
						
							| 56 | 55 | eceq1d |  | 
						
							| 57 | 56 | eqeq2d |  | 
						
							| 58 | 54 57 | anbi12d |  | 
						
							| 59 |  | eceq1 |  | 
						
							| 60 | 59 | eqeq2d |  | 
						
							| 61 | 60 | anbi2d |  | 
						
							| 62 |  | oveq2 |  | 
						
							| 63 | 62 | eceq1d |  | 
						
							| 64 | 63 | eqeq2d |  | 
						
							| 65 | 61 64 | anbi12d |  | 
						
							| 66 | 58 65 | cbvrex2vw |  | 
						
							| 67 | 51 66 | anbi12i |  | 
						
							| 68 | 36 67 | bitr4i |  | 
						
							| 69 |  | reeanv |  | 
						
							| 70 | 4 | adantr |  | 
						
							| 71 | 7 | adantr |  | 
						
							| 72 |  | simprll |  | 
						
							| 73 | 71 72 | sseldd |  | 
						
							| 74 | 70 73 | erth |  | 
						
							| 75 | 5 | adantr |  | 
						
							| 76 | 8 | adantr |  | 
						
							| 77 |  | simprrl |  | 
						
							| 78 | 76 77 | sseldd |  | 
						
							| 79 | 75 78 | erth |  | 
						
							| 80 | 74 79 | anbi12d |  | 
						
							| 81 | 6 | adantr |  | 
						
							| 82 | 9 | adantr |  | 
						
							| 83 | 10 | adantr |  | 
						
							| 84 | 83 72 77 | fovcdmd |  | 
						
							| 85 | 82 84 | sseldd |  | 
						
							| 86 | 81 85 | erth |  | 
						
							| 87 | 11 80 86 | 3imtr3d |  | 
						
							| 88 |  | eqeq2 |  | 
						
							| 89 | 88 | biimprcd |  | 
						
							| 90 | 87 89 | syl6 |  | 
						
							| 91 | 90 | impd |  | 
						
							| 92 |  | eqeq1 |  | 
						
							| 93 |  | eqeq1 |  | 
						
							| 94 | 92 93 | bi2anan9 |  | 
						
							| 95 | 94 | anbi1d |  | 
						
							| 96 | 95 | adantr |  | 
						
							| 97 |  | eqeq1 |  | 
						
							| 98 | 97 | adantl |  | 
						
							| 99 | 96 98 | imbi12d |  | 
						
							| 100 | 91 99 | syl5ibrcom |  | 
						
							| 101 | 100 | impd |  | 
						
							| 102 | 101 | anassrs |  | 
						
							| 103 | 102 | rexlimdvva |  | 
						
							| 104 | 69 103 | biimtrrid |  | 
						
							| 105 | 104 | rexlimdvva |  | 
						
							| 106 | 68 105 | biimtrrid |  | 
						
							| 107 | 106 | adantr |  | 
						
							| 108 | 107 | alrimivv |  | 
						
							| 109 |  | eqeq1 |  | 
						
							| 110 | 109 | anbi2d |  | 
						
							| 111 | 110 | 2rexbidv |  | 
						
							| 112 | 111 | eu4 |  | 
						
							| 113 | 35 108 112 | sylanbrc |  |