| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eropr.1 |
⊢ 𝐽 = ( 𝐴 / 𝑅 ) |
| 2 |
|
eropr.2 |
⊢ 𝐾 = ( 𝐵 / 𝑆 ) |
| 3 |
|
eropr.3 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑍 ) |
| 4 |
|
eropr.4 |
⊢ ( 𝜑 → 𝑅 Er 𝑈 ) |
| 5 |
|
eropr.5 |
⊢ ( 𝜑 → 𝑆 Er 𝑉 ) |
| 6 |
|
eropr.6 |
⊢ ( 𝜑 → 𝑇 Er 𝑊 ) |
| 7 |
|
eropr.7 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
| 8 |
|
eropr.8 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑉 ) |
| 9 |
|
eropr.9 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝑊 ) |
| 10 |
|
eropr.10 |
⊢ ( 𝜑 → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) |
| 11 |
|
eropr.11 |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 𝑅 𝑠 ∧ 𝑡 𝑆 𝑢 ) → ( 𝑟 + 𝑡 ) 𝑇 ( 𝑠 + 𝑢 ) ) ) |
| 12 |
|
elqsi |
⊢ ( 𝑋 ∈ ( 𝐴 / 𝑅 ) → ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ) |
| 13 |
12 1
|
eleq2s |
⊢ ( 𝑋 ∈ 𝐽 → ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ) |
| 14 |
|
elqsi |
⊢ ( 𝑌 ∈ ( 𝐵 / 𝑆 ) → ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) |
| 15 |
14 2
|
eleq2s |
⊢ ( 𝑌 ∈ 𝐾 → ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) |
| 16 |
13 15
|
anim12i |
⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) → ( ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ∧ ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ( ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ∧ ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) ) |
| 18 |
|
reeanv |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ∧ ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) ) |
| 19 |
17 18
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ) |
| 20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → 𝑇 ∈ 𝑍 ) |
| 21 |
|
ecexg |
⊢ ( 𝑇 ∈ 𝑍 → [ ( 𝑝 + 𝑞 ) ] 𝑇 ∈ V ) |
| 22 |
|
elisset |
⊢ ( [ ( 𝑝 + 𝑞 ) ] 𝑇 ∈ V → ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) |
| 23 |
20 21 22
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) |
| 24 |
23
|
biantrud |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 25 |
24
|
2rexbidv |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 26 |
19 25
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 27 |
|
19.42v |
⊢ ( ∃ 𝑧 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 28 |
27
|
bicomi |
⊢ ( ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 29 |
28
|
rexbii |
⊢ ( ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑞 ∈ 𝐵 ∃ 𝑧 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 30 |
|
rexcom4 |
⊢ ( ∃ 𝑞 ∈ 𝐵 ∃ 𝑧 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 31 |
29 30
|
bitri |
⊢ ( ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 32 |
31
|
rexbii |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑧 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 33 |
|
rexcom4 |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑧 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 34 |
32 33
|
bitri |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 35 |
26 34
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 36 |
|
reeanv |
⊢ ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ↔ ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑠 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
| 37 |
|
eceq1 |
⊢ ( 𝑝 = 𝑟 → [ 𝑝 ] 𝑅 = [ 𝑟 ] 𝑅 ) |
| 38 |
37
|
eqeq2d |
⊢ ( 𝑝 = 𝑟 → ( 𝑋 = [ 𝑝 ] 𝑅 ↔ 𝑋 = [ 𝑟 ] 𝑅 ) ) |
| 39 |
38
|
anbi1d |
⊢ ( 𝑝 = 𝑟 → ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ) ) |
| 40 |
|
oveq1 |
⊢ ( 𝑝 = 𝑟 → ( 𝑝 + 𝑞 ) = ( 𝑟 + 𝑞 ) ) |
| 41 |
40
|
eceq1d |
⊢ ( 𝑝 = 𝑟 → [ ( 𝑝 + 𝑞 ) ] 𝑇 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ) |
| 42 |
41
|
eqeq2d |
⊢ ( 𝑝 = 𝑟 → ( 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ↔ 𝑧 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ) ) |
| 43 |
39 42
|
anbi12d |
⊢ ( 𝑝 = 𝑟 → ( ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ) ) ) |
| 44 |
|
eceq1 |
⊢ ( 𝑞 = 𝑡 → [ 𝑞 ] 𝑆 = [ 𝑡 ] 𝑆 ) |
| 45 |
44
|
eqeq2d |
⊢ ( 𝑞 = 𝑡 → ( 𝑌 = [ 𝑞 ] 𝑆 ↔ 𝑌 = [ 𝑡 ] 𝑆 ) ) |
| 46 |
45
|
anbi2d |
⊢ ( 𝑞 = 𝑡 → ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ) ) |
| 47 |
|
oveq2 |
⊢ ( 𝑞 = 𝑡 → ( 𝑟 + 𝑞 ) = ( 𝑟 + 𝑡 ) ) |
| 48 |
47
|
eceq1d |
⊢ ( 𝑞 = 𝑡 → [ ( 𝑟 + 𝑞 ) ] 𝑇 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) |
| 49 |
48
|
eqeq2d |
⊢ ( 𝑞 = 𝑡 → ( 𝑧 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ↔ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ) |
| 50 |
46 49
|
anbi12d |
⊢ ( 𝑞 = 𝑡 → ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ) ) |
| 51 |
43 50
|
cbvrex2vw |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑟 ∈ 𝐴 ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ) |
| 52 |
|
eceq1 |
⊢ ( 𝑝 = 𝑠 → [ 𝑝 ] 𝑅 = [ 𝑠 ] 𝑅 ) |
| 53 |
52
|
eqeq2d |
⊢ ( 𝑝 = 𝑠 → ( 𝑋 = [ 𝑝 ] 𝑅 ↔ 𝑋 = [ 𝑠 ] 𝑅 ) ) |
| 54 |
53
|
anbi1d |
⊢ ( 𝑝 = 𝑠 → ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ) ) |
| 55 |
|
oveq1 |
⊢ ( 𝑝 = 𝑠 → ( 𝑝 + 𝑞 ) = ( 𝑠 + 𝑞 ) ) |
| 56 |
55
|
eceq1d |
⊢ ( 𝑝 = 𝑠 → [ ( 𝑝 + 𝑞 ) ] 𝑇 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ) |
| 57 |
56
|
eqeq2d |
⊢ ( 𝑝 = 𝑠 → ( 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ↔ 𝑤 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ) ) |
| 58 |
54 57
|
anbi12d |
⊢ ( 𝑝 = 𝑠 → ( ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ) ) ) |
| 59 |
|
eceq1 |
⊢ ( 𝑞 = 𝑢 → [ 𝑞 ] 𝑆 = [ 𝑢 ] 𝑆 ) |
| 60 |
59
|
eqeq2d |
⊢ ( 𝑞 = 𝑢 → ( 𝑌 = [ 𝑞 ] 𝑆 ↔ 𝑌 = [ 𝑢 ] 𝑆 ) ) |
| 61 |
60
|
anbi2d |
⊢ ( 𝑞 = 𝑢 → ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ) ) |
| 62 |
|
oveq2 |
⊢ ( 𝑞 = 𝑢 → ( 𝑠 + 𝑞 ) = ( 𝑠 + 𝑢 ) ) |
| 63 |
62
|
eceq1d |
⊢ ( 𝑞 = 𝑢 → [ ( 𝑠 + 𝑞 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) |
| 64 |
63
|
eqeq2d |
⊢ ( 𝑞 = 𝑢 → ( 𝑤 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ↔ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) |
| 65 |
61 64
|
anbi12d |
⊢ ( 𝑞 = 𝑢 → ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
| 66 |
58 65
|
cbvrex2vw |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑠 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) |
| 67 |
51 66
|
anbi12i |
⊢ ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ↔ ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑠 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
| 68 |
36 67
|
bitr4i |
⊢ ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ↔ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 69 |
|
reeanv |
⊢ ( ∃ 𝑡 ∈ 𝐵 ∃ 𝑢 ∈ 𝐵 ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ↔ ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
| 70 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑅 Er 𝑈 ) |
| 71 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝐴 ⊆ 𝑈 ) |
| 72 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑟 ∈ 𝐴 ) |
| 73 |
71 72
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑟 ∈ 𝑈 ) |
| 74 |
70 73
|
erth |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( 𝑟 𝑅 𝑠 ↔ [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ) ) |
| 75 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑆 Er 𝑉 ) |
| 76 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝐵 ⊆ 𝑉 ) |
| 77 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑡 ∈ 𝐵 ) |
| 78 |
76 77
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑡 ∈ 𝑉 ) |
| 79 |
75 78
|
erth |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( 𝑡 𝑆 𝑢 ↔ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ) |
| 80 |
74 79
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 𝑅 𝑠 ∧ 𝑡 𝑆 𝑢 ) ↔ ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ) ) |
| 81 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑇 Er 𝑊 ) |
| 82 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝐶 ⊆ 𝑊 ) |
| 83 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) |
| 84 |
83 72 77
|
fovcdmd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( 𝑟 + 𝑡 ) ∈ 𝐶 ) |
| 85 |
82 84
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( 𝑟 + 𝑡 ) ∈ 𝑊 ) |
| 86 |
81 85
|
erth |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 + 𝑡 ) 𝑇 ( 𝑠 + 𝑢 ) ↔ [ ( 𝑟 + 𝑡 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) |
| 87 |
11 80 86
|
3imtr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) → [ ( 𝑟 + 𝑡 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) |
| 88 |
|
eqeq2 |
⊢ ( 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 → ( [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ↔ [ ( 𝑟 + 𝑡 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) |
| 89 |
88
|
biimprcd |
⊢ ( [ ( 𝑟 + 𝑡 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 → ( 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 → [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) |
| 90 |
87 89
|
syl6 |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) → ( 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 → [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) ) |
| 91 |
90
|
impd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) → [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) |
| 92 |
|
eqeq1 |
⊢ ( 𝑋 = [ 𝑟 ] 𝑅 → ( 𝑋 = [ 𝑠 ] 𝑅 ↔ [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ) ) |
| 93 |
|
eqeq1 |
⊢ ( 𝑌 = [ 𝑡 ] 𝑆 → ( 𝑌 = [ 𝑢 ] 𝑆 ↔ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ) |
| 94 |
92 93
|
bi2anan9 |
⊢ ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) → ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ↔ ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ) ) |
| 95 |
94
|
anbi1d |
⊢ ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) → ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ↔ ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
| 96 |
95
|
adantr |
⊢ ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) → ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ↔ ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
| 97 |
|
eqeq1 |
⊢ ( 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 → ( 𝑧 = 𝑤 ↔ [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) |
| 98 |
97
|
adantl |
⊢ ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) → ( 𝑧 = 𝑤 ↔ [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) |
| 99 |
96 98
|
imbi12d |
⊢ ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) → ( ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) → 𝑧 = 𝑤 ) ↔ ( ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) → [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) ) |
| 100 |
91 99
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) → ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) → 𝑧 = 𝑤 ) ) ) |
| 101 |
100
|
impd |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 102 |
101
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) → ( ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 103 |
102
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) → ( ∃ 𝑡 ∈ 𝐵 ∃ 𝑢 ∈ 𝐵 ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 104 |
69 103
|
biimtrrid |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) → ( ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 105 |
104
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 106 |
68 105
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 107 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 108 |
107
|
alrimivv |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∀ 𝑧 ∀ 𝑤 ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 109 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ↔ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 110 |
109
|
anbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 111 |
110
|
2rexbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 112 |
111
|
eu4 |
⊢ ( ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ∃ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) ) |
| 113 |
35 108 112
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |