| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eropr.1 |  |-  J = ( A /. R ) | 
						
							| 2 |  | eropr.2 |  |-  K = ( B /. S ) | 
						
							| 3 |  | eropr.3 |  |-  ( ph -> T e. Z ) | 
						
							| 4 |  | eropr.4 |  |-  ( ph -> R Er U ) | 
						
							| 5 |  | eropr.5 |  |-  ( ph -> S Er V ) | 
						
							| 6 |  | eropr.6 |  |-  ( ph -> T Er W ) | 
						
							| 7 |  | eropr.7 |  |-  ( ph -> A C_ U ) | 
						
							| 8 |  | eropr.8 |  |-  ( ph -> B C_ V ) | 
						
							| 9 |  | eropr.9 |  |-  ( ph -> C C_ W ) | 
						
							| 10 |  | eropr.10 |  |-  ( ph -> .+ : ( A X. B ) --> C ) | 
						
							| 11 |  | eropr.11 |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r R s /\ t S u ) -> ( r .+ t ) T ( s .+ u ) ) ) | 
						
							| 12 |  | elqsi |  |-  ( X e. ( A /. R ) -> E. p e. A X = [ p ] R ) | 
						
							| 13 | 12 1 | eleq2s |  |-  ( X e. J -> E. p e. A X = [ p ] R ) | 
						
							| 14 |  | elqsi |  |-  ( Y e. ( B /. S ) -> E. q e. B Y = [ q ] S ) | 
						
							| 15 | 14 2 | eleq2s |  |-  ( Y e. K -> E. q e. B Y = [ q ] S ) | 
						
							| 16 | 13 15 | anim12i |  |-  ( ( X e. J /\ Y e. K ) -> ( E. p e. A X = [ p ] R /\ E. q e. B Y = [ q ] S ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ ( X e. J /\ Y e. K ) ) -> ( E. p e. A X = [ p ] R /\ E. q e. B Y = [ q ] S ) ) | 
						
							| 18 |  | reeanv |  |-  ( E. p e. A E. q e. B ( X = [ p ] R /\ Y = [ q ] S ) <-> ( E. p e. A X = [ p ] R /\ E. q e. B Y = [ q ] S ) ) | 
						
							| 19 | 17 18 | sylibr |  |-  ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E. p e. A E. q e. B ( X = [ p ] R /\ Y = [ q ] S ) ) | 
						
							| 20 | 3 | adantr |  |-  ( ( ph /\ ( X e. J /\ Y e. K ) ) -> T e. Z ) | 
						
							| 21 |  | ecexg |  |-  ( T e. Z -> [ ( p .+ q ) ] T e. _V ) | 
						
							| 22 |  | elisset |  |-  ( [ ( p .+ q ) ] T e. _V -> E. z z = [ ( p .+ q ) ] T ) | 
						
							| 23 | 20 21 22 | 3syl |  |-  ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E. z z = [ ( p .+ q ) ] T ) | 
						
							| 24 | 23 | biantrud |  |-  ( ( ph /\ ( X e. J /\ Y e. K ) ) -> ( ( X = [ p ] R /\ Y = [ q ] S ) <-> ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) ) ) | 
						
							| 25 | 24 | 2rexbidv |  |-  ( ( ph /\ ( X e. J /\ Y e. K ) ) -> ( E. p e. A E. q e. B ( X = [ p ] R /\ Y = [ q ] S ) <-> E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) ) ) | 
						
							| 26 | 19 25 | mpbid |  |-  ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) ) | 
						
							| 27 |  | 19.42v |  |-  ( E. z ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) ) | 
						
							| 28 | 27 | bicomi |  |-  ( ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. z ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) | 
						
							| 29 | 28 | rexbii |  |-  ( E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. q e. B E. z ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) | 
						
							| 30 |  | rexcom4 |  |-  ( E. q e. B E. z ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. z E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) | 
						
							| 31 | 29 30 | bitri |  |-  ( E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. z E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) | 
						
							| 32 | 31 | rexbii |  |-  ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. p e. A E. z E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) | 
						
							| 33 |  | rexcom4 |  |-  ( E. p e. A E. z E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) | 
						
							| 34 | 32 33 | bitri |  |-  ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) | 
						
							| 35 | 26 34 | sylib |  |-  ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E. z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) | 
						
							| 36 |  | reeanv |  |-  ( E. r e. A E. s e. A ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) <-> ( E. r e. A E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. s e. A E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) | 
						
							| 37 |  | eceq1 |  |-  ( p = r -> [ p ] R = [ r ] R ) | 
						
							| 38 | 37 | eqeq2d |  |-  ( p = r -> ( X = [ p ] R <-> X = [ r ] R ) ) | 
						
							| 39 | 38 | anbi1d |  |-  ( p = r -> ( ( X = [ p ] R /\ Y = [ q ] S ) <-> ( X = [ r ] R /\ Y = [ q ] S ) ) ) | 
						
							| 40 |  | oveq1 |  |-  ( p = r -> ( p .+ q ) = ( r .+ q ) ) | 
						
							| 41 | 40 | eceq1d |  |-  ( p = r -> [ ( p .+ q ) ] T = [ ( r .+ q ) ] T ) | 
						
							| 42 | 41 | eqeq2d |  |-  ( p = r -> ( z = [ ( p .+ q ) ] T <-> z = [ ( r .+ q ) ] T ) ) | 
						
							| 43 | 39 42 | anbi12d |  |-  ( p = r -> ( ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( ( X = [ r ] R /\ Y = [ q ] S ) /\ z = [ ( r .+ q ) ] T ) ) ) | 
						
							| 44 |  | eceq1 |  |-  ( q = t -> [ q ] S = [ t ] S ) | 
						
							| 45 | 44 | eqeq2d |  |-  ( q = t -> ( Y = [ q ] S <-> Y = [ t ] S ) ) | 
						
							| 46 | 45 | anbi2d |  |-  ( q = t -> ( ( X = [ r ] R /\ Y = [ q ] S ) <-> ( X = [ r ] R /\ Y = [ t ] S ) ) ) | 
						
							| 47 |  | oveq2 |  |-  ( q = t -> ( r .+ q ) = ( r .+ t ) ) | 
						
							| 48 | 47 | eceq1d |  |-  ( q = t -> [ ( r .+ q ) ] T = [ ( r .+ t ) ] T ) | 
						
							| 49 | 48 | eqeq2d |  |-  ( q = t -> ( z = [ ( r .+ q ) ] T <-> z = [ ( r .+ t ) ] T ) ) | 
						
							| 50 | 46 49 | anbi12d |  |-  ( q = t -> ( ( ( X = [ r ] R /\ Y = [ q ] S ) /\ z = [ ( r .+ q ) ] T ) <-> ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) ) ) | 
						
							| 51 | 43 50 | cbvrex2vw |  |-  ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. r e. A E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) ) | 
						
							| 52 |  | eceq1 |  |-  ( p = s -> [ p ] R = [ s ] R ) | 
						
							| 53 | 52 | eqeq2d |  |-  ( p = s -> ( X = [ p ] R <-> X = [ s ] R ) ) | 
						
							| 54 | 53 | anbi1d |  |-  ( p = s -> ( ( X = [ p ] R /\ Y = [ q ] S ) <-> ( X = [ s ] R /\ Y = [ q ] S ) ) ) | 
						
							| 55 |  | oveq1 |  |-  ( p = s -> ( p .+ q ) = ( s .+ q ) ) | 
						
							| 56 | 55 | eceq1d |  |-  ( p = s -> [ ( p .+ q ) ] T = [ ( s .+ q ) ] T ) | 
						
							| 57 | 56 | eqeq2d |  |-  ( p = s -> ( w = [ ( p .+ q ) ] T <-> w = [ ( s .+ q ) ] T ) ) | 
						
							| 58 | 54 57 | anbi12d |  |-  ( p = s -> ( ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) <-> ( ( X = [ s ] R /\ Y = [ q ] S ) /\ w = [ ( s .+ q ) ] T ) ) ) | 
						
							| 59 |  | eceq1 |  |-  ( q = u -> [ q ] S = [ u ] S ) | 
						
							| 60 | 59 | eqeq2d |  |-  ( q = u -> ( Y = [ q ] S <-> Y = [ u ] S ) ) | 
						
							| 61 | 60 | anbi2d |  |-  ( q = u -> ( ( X = [ s ] R /\ Y = [ q ] S ) <-> ( X = [ s ] R /\ Y = [ u ] S ) ) ) | 
						
							| 62 |  | oveq2 |  |-  ( q = u -> ( s .+ q ) = ( s .+ u ) ) | 
						
							| 63 | 62 | eceq1d |  |-  ( q = u -> [ ( s .+ q ) ] T = [ ( s .+ u ) ] T ) | 
						
							| 64 | 63 | eqeq2d |  |-  ( q = u -> ( w = [ ( s .+ q ) ] T <-> w = [ ( s .+ u ) ] T ) ) | 
						
							| 65 | 61 64 | anbi12d |  |-  ( q = u -> ( ( ( X = [ s ] R /\ Y = [ q ] S ) /\ w = [ ( s .+ q ) ] T ) <-> ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) | 
						
							| 66 | 58 65 | cbvrex2vw |  |-  ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) <-> E. s e. A E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) | 
						
							| 67 | 51 66 | anbi12i |  |-  ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) <-> ( E. r e. A E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. s e. A E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) | 
						
							| 68 | 36 67 | bitr4i |  |-  ( E. r e. A E. s e. A ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) <-> ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) ) | 
						
							| 69 |  | reeanv |  |-  ( E. t e. B E. u e. B ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) <-> ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) | 
						
							| 70 | 4 | adantr |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> R Er U ) | 
						
							| 71 | 7 | adantr |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> A C_ U ) | 
						
							| 72 |  | simprll |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> r e. A ) | 
						
							| 73 | 71 72 | sseldd |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> r e. U ) | 
						
							| 74 | 70 73 | erth |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( r R s <-> [ r ] R = [ s ] R ) ) | 
						
							| 75 | 5 | adantr |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> S Er V ) | 
						
							| 76 | 8 | adantr |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> B C_ V ) | 
						
							| 77 |  | simprrl |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> t e. B ) | 
						
							| 78 | 76 77 | sseldd |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> t e. V ) | 
						
							| 79 | 75 78 | erth |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( t S u <-> [ t ] S = [ u ] S ) ) | 
						
							| 80 | 74 79 | anbi12d |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r R s /\ t S u ) <-> ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) ) ) | 
						
							| 81 | 6 | adantr |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> T Er W ) | 
						
							| 82 | 9 | adantr |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> C C_ W ) | 
						
							| 83 | 10 | adantr |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> .+ : ( A X. B ) --> C ) | 
						
							| 84 | 83 72 77 | fovcdmd |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( r .+ t ) e. C ) | 
						
							| 85 | 82 84 | sseldd |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( r .+ t ) e. W ) | 
						
							| 86 | 81 85 | erth |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r .+ t ) T ( s .+ u ) <-> [ ( r .+ t ) ] T = [ ( s .+ u ) ] T ) ) | 
						
							| 87 | 11 80 86 | 3imtr3d |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) -> [ ( r .+ t ) ] T = [ ( s .+ u ) ] T ) ) | 
						
							| 88 |  | eqeq2 |  |-  ( w = [ ( s .+ u ) ] T -> ( [ ( r .+ t ) ] T = w <-> [ ( r .+ t ) ] T = [ ( s .+ u ) ] T ) ) | 
						
							| 89 | 88 | biimprcd |  |-  ( [ ( r .+ t ) ] T = [ ( s .+ u ) ] T -> ( w = [ ( s .+ u ) ] T -> [ ( r .+ t ) ] T = w ) ) | 
						
							| 90 | 87 89 | syl6 |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) -> ( w = [ ( s .+ u ) ] T -> [ ( r .+ t ) ] T = w ) ) ) | 
						
							| 91 | 90 | impd |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) -> [ ( r .+ t ) ] T = w ) ) | 
						
							| 92 |  | eqeq1 |  |-  ( X = [ r ] R -> ( X = [ s ] R <-> [ r ] R = [ s ] R ) ) | 
						
							| 93 |  | eqeq1 |  |-  ( Y = [ t ] S -> ( Y = [ u ] S <-> [ t ] S = [ u ] S ) ) | 
						
							| 94 | 92 93 | bi2anan9 |  |-  ( ( X = [ r ] R /\ Y = [ t ] S ) -> ( ( X = [ s ] R /\ Y = [ u ] S ) <-> ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) ) ) | 
						
							| 95 | 94 | anbi1d |  |-  ( ( X = [ r ] R /\ Y = [ t ] S ) -> ( ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) <-> ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) -> ( ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) <-> ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) | 
						
							| 97 |  | eqeq1 |  |-  ( z = [ ( r .+ t ) ] T -> ( z = w <-> [ ( r .+ t ) ] T = w ) ) | 
						
							| 98 | 97 | adantl |  |-  ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) -> ( z = w <-> [ ( r .+ t ) ] T = w ) ) | 
						
							| 99 | 96 98 | imbi12d |  |-  ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) -> ( ( ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) -> z = w ) <-> ( ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) -> [ ( r .+ t ) ] T = w ) ) ) | 
						
							| 100 | 91 99 | syl5ibrcom |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) -> ( ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) -> z = w ) ) ) | 
						
							| 101 | 100 | impd |  |-  ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) | 
						
							| 102 | 101 | anassrs |  |-  ( ( ( ph /\ ( r e. A /\ s e. A ) ) /\ ( t e. B /\ u e. B ) ) -> ( ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) | 
						
							| 103 | 102 | rexlimdvva |  |-  ( ( ph /\ ( r e. A /\ s e. A ) ) -> ( E. t e. B E. u e. B ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) | 
						
							| 104 | 69 103 | biimtrrid |  |-  ( ( ph /\ ( r e. A /\ s e. A ) ) -> ( ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) | 
						
							| 105 | 104 | rexlimdvva |  |-  ( ph -> ( E. r e. A E. s e. A ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) | 
						
							| 106 | 68 105 | biimtrrid |  |-  ( ph -> ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) -> z = w ) ) | 
						
							| 107 | 106 | adantr |  |-  ( ( ph /\ ( X e. J /\ Y e. K ) ) -> ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) -> z = w ) ) | 
						
							| 108 | 107 | alrimivv |  |-  ( ( ph /\ ( X e. J /\ Y e. K ) ) -> A. z A. w ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) -> z = w ) ) | 
						
							| 109 |  | eqeq1 |  |-  ( z = w -> ( z = [ ( p .+ q ) ] T <-> w = [ ( p .+ q ) ] T ) ) | 
						
							| 110 | 109 | anbi2d |  |-  ( z = w -> ( ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) ) | 
						
							| 111 | 110 | 2rexbidv |  |-  ( z = w -> ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) ) | 
						
							| 112 | 111 | eu4 |  |-  ( E! z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( E. z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ A. z A. w ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) -> z = w ) ) ) | 
						
							| 113 | 35 108 112 | sylanbrc |  |-  ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E! z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |