| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eropr.1 |
⊢ 𝐽 = ( 𝐴 / 𝑅 ) |
| 2 |
|
eropr.2 |
⊢ 𝐾 = ( 𝐵 / 𝑆 ) |
| 3 |
|
eropr.3 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑍 ) |
| 4 |
|
eropr.4 |
⊢ ( 𝜑 → 𝑅 Er 𝑈 ) |
| 5 |
|
eropr.5 |
⊢ ( 𝜑 → 𝑆 Er 𝑉 ) |
| 6 |
|
eropr.6 |
⊢ ( 𝜑 → 𝑇 Er 𝑊 ) |
| 7 |
|
eropr.7 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
| 8 |
|
eropr.8 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑉 ) |
| 9 |
|
eropr.9 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝑊 ) |
| 10 |
|
eropr.10 |
⊢ ( 𝜑 → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) |
| 11 |
|
eropr.11 |
⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 𝑅 𝑠 ∧ 𝑡 𝑆 𝑢 ) → ( 𝑟 + 𝑡 ) 𝑇 ( 𝑠 + 𝑢 ) ) ) |
| 12 |
|
eropr.12 |
⊢ ⨣ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) } |
| 13 |
|
eropr.13 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) |
| 14 |
|
eropr.14 |
⊢ ( 𝜑 → 𝑆 ∈ 𝑌 ) |
| 15 |
1 2 3 4 5 6 7 8 9 10 11 12
|
erovlem |
⊢ ( 𝜑 → ⨣ = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ⨣ = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) |
| 17 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → 𝑥 = [ 𝑃 ] 𝑅 ) |
| 18 |
17
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → ( 𝑥 = [ 𝑝 ] 𝑅 ↔ [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ) ) |
| 19 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → 𝑦 = [ 𝑄 ] 𝑆 ) |
| 20 |
19
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → ( 𝑦 = [ 𝑞 ] 𝑆 ↔ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ) |
| 21 |
18 20
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ↔ ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ) ) |
| 22 |
21
|
anbi1d |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → ( ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 23 |
22
|
2rexbidv |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 24 |
23
|
iotabidv |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 25 |
|
ecelqsg |
⊢ ( ( 𝑅 ∈ 𝑋 ∧ 𝑃 ∈ 𝐴 ) → [ 𝑃 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |
| 26 |
25 1
|
eleqtrrdi |
⊢ ( ( 𝑅 ∈ 𝑋 ∧ 𝑃 ∈ 𝐴 ) → [ 𝑃 ] 𝑅 ∈ 𝐽 ) |
| 27 |
13 26
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ) → [ 𝑃 ] 𝑅 ∈ 𝐽 ) |
| 28 |
27
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → [ 𝑃 ] 𝑅 ∈ 𝐽 ) |
| 29 |
|
ecelqsg |
⊢ ( ( 𝑆 ∈ 𝑌 ∧ 𝑄 ∈ 𝐵 ) → [ 𝑄 ] 𝑆 ∈ ( 𝐵 / 𝑆 ) ) |
| 30 |
29 2
|
eleqtrrdi |
⊢ ( ( 𝑆 ∈ 𝑌 ∧ 𝑄 ∈ 𝐵 ) → [ 𝑄 ] 𝑆 ∈ 𝐾 ) |
| 31 |
14 30
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ 𝐵 ) → [ 𝑄 ] 𝑆 ∈ 𝐾 ) |
| 32 |
31
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → [ 𝑄 ] 𝑆 ∈ 𝐾 ) |
| 33 |
|
iotaex |
⊢ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ∈ V |
| 34 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ∈ V ) |
| 35 |
16 24 28 32 34
|
ovmpod |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ( [ 𝑃 ] 𝑅 ⨣ [ 𝑄 ] 𝑆 ) = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 36 |
|
eqid |
⊢ [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 |
| 37 |
|
eqid |
⊢ [ 𝑄 ] 𝑆 = [ 𝑄 ] 𝑆 |
| 38 |
36 37
|
pm3.2i |
⊢ ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑄 ] 𝑆 ) |
| 39 |
|
eqid |
⊢ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑄 ) ] 𝑇 |
| 40 |
38 39
|
pm3.2i |
⊢ ( ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑄 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) |
| 41 |
|
eceq1 |
⊢ ( 𝑝 = 𝑃 → [ 𝑝 ] 𝑅 = [ 𝑃 ] 𝑅 ) |
| 42 |
41
|
eqeq2d |
⊢ ( 𝑝 = 𝑃 → ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ↔ [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ) ) |
| 43 |
42
|
anbi1d |
⊢ ( 𝑝 = 𝑃 → ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ↔ ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ) ) |
| 44 |
|
oveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 + 𝑞 ) = ( 𝑃 + 𝑞 ) ) |
| 45 |
44
|
eceq1d |
⊢ ( 𝑝 = 𝑃 → [ ( 𝑝 + 𝑞 ) ] 𝑇 = [ ( 𝑃 + 𝑞 ) ] 𝑇 ) |
| 46 |
45
|
eqeq2d |
⊢ ( 𝑝 = 𝑃 → ( [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ↔ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑞 ) ] 𝑇 ) ) |
| 47 |
43 46
|
anbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑞 ) ] 𝑇 ) ) ) |
| 48 |
|
eceq1 |
⊢ ( 𝑞 = 𝑄 → [ 𝑞 ] 𝑆 = [ 𝑄 ] 𝑆 ) |
| 49 |
48
|
eqeq2d |
⊢ ( 𝑞 = 𝑄 → ( [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ↔ [ 𝑄 ] 𝑆 = [ 𝑄 ] 𝑆 ) ) |
| 50 |
49
|
anbi2d |
⊢ ( 𝑞 = 𝑄 → ( ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ↔ ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑄 ] 𝑆 ) ) ) |
| 51 |
|
oveq2 |
⊢ ( 𝑞 = 𝑄 → ( 𝑃 + 𝑞 ) = ( 𝑃 + 𝑄 ) ) |
| 52 |
51
|
eceq1d |
⊢ ( 𝑞 = 𝑄 → [ ( 𝑃 + 𝑞 ) ] 𝑇 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) |
| 53 |
52
|
eqeq2d |
⊢ ( 𝑞 = 𝑄 → ( [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑞 ) ] 𝑇 ↔ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) ) |
| 54 |
50 53
|
anbi12d |
⊢ ( 𝑞 = 𝑄 → ( ( ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑞 ) ] 𝑇 ) ↔ ( ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑄 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) ) ) |
| 55 |
47 54
|
rspc2ev |
⊢ ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ∧ ( ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑄 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 56 |
40 55
|
mp3an3 |
⊢ ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 57 |
56
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 58 |
|
ecexg |
⊢ ( 𝑇 ∈ 𝑍 → [ ( 𝑃 + 𝑄 ) ] 𝑇 ∈ V ) |
| 59 |
3 58
|
syl |
⊢ ( 𝜑 → [ ( 𝑃 + 𝑄 ) ] 𝑇 ∈ V ) |
| 60 |
59
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → [ ( 𝑃 + 𝑄 ) ] 𝑇 ∈ V ) |
| 61 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → 𝜑 ) |
| 62 |
1 2 3 4 5 6 7 8 9 10 11
|
eroveu |
⊢ ( ( 𝜑 ∧ ( [ 𝑃 ] 𝑅 ∈ 𝐽 ∧ [ 𝑄 ] 𝑆 ∈ 𝐾 ) ) → ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 63 |
61 28 32 62
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 64 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ 𝑧 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) → 𝑧 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) |
| 65 |
64
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ 𝑧 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) → ( 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ↔ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 66 |
65
|
anbi2d |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ 𝑧 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) → ( ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 67 |
66
|
2rexbidv |
⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ 𝑧 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 68 |
60 63 67
|
iota2d |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) ) |
| 69 |
57 68
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) |
| 70 |
35 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ( [ 𝑃 ] 𝑅 ⨣ [ 𝑄 ] 𝑆 ) = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) |