Metamath Proof Explorer


Theorem brfvidRP

Description: If two elements are connected by a value of the identity relation, then they are connected via the argument. This is an example which uses brmptiunrelexpd . (Contributed by RP, 21-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis brfvidRP.r φ R V
Assertion brfvidRP φ A I R B A R B

Proof

Step Hyp Ref Expression
1 brfvidRP.r φ R V
2 dfid6 I = r V n 1 r r n
3 1nn0 1 0
4 snssi 1 0 1 0
5 3 4 mp1i φ 1 0
6 2 1 5 brmptiunrelexpd φ A I R B n 1 A R r n B
7 oveq2 n = 1 R r n = R r 1
8 7 breqd n = 1 A R r n B A R r 1 B
9 8 rexsng 1 0 n 1 A R r n B A R r 1 B
10 3 9 mp1i φ n 1 A R r n B A R r 1 B
11 1 relexp1d φ R r 1 = R
12 11 breqd φ A R r 1 B A R B
13 6 10 12 3bitrd φ A I R B A R B