| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brfvidRP.r |
|- ( ph -> R e. _V ) |
| 2 |
|
dfid6 |
|- _I = ( r e. _V |-> U_ n e. { 1 } ( r ^r n ) ) |
| 3 |
|
1nn0 |
|- 1 e. NN0 |
| 4 |
|
snssi |
|- ( 1 e. NN0 -> { 1 } C_ NN0 ) |
| 5 |
3 4
|
mp1i |
|- ( ph -> { 1 } C_ NN0 ) |
| 6 |
2 1 5
|
brmptiunrelexpd |
|- ( ph -> ( A ( _I ` R ) B <-> E. n e. { 1 } A ( R ^r n ) B ) ) |
| 7 |
|
oveq2 |
|- ( n = 1 -> ( R ^r n ) = ( R ^r 1 ) ) |
| 8 |
7
|
breqd |
|- ( n = 1 -> ( A ( R ^r n ) B <-> A ( R ^r 1 ) B ) ) |
| 9 |
8
|
rexsng |
|- ( 1 e. NN0 -> ( E. n e. { 1 } A ( R ^r n ) B <-> A ( R ^r 1 ) B ) ) |
| 10 |
3 9
|
mp1i |
|- ( ph -> ( E. n e. { 1 } A ( R ^r n ) B <-> A ( R ^r 1 ) B ) ) |
| 11 |
1
|
relexp1d |
|- ( ph -> ( R ^r 1 ) = R ) |
| 12 |
11
|
breqd |
|- ( ph -> ( A ( R ^r 1 ) B <-> A R B ) ) |
| 13 |
6 10 12
|
3bitrd |
|- ( ph -> ( A ( _I ` R ) B <-> A R B ) ) |