Metamath Proof Explorer


Theorem brfvidRP

Description: If two elements are connected by a value of the identity relation, then they are connected via the argument. This is an example which uses brmptiunrelexpd . (Contributed by RP, 21-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis brfvidRP.r
|- ( ph -> R e. _V )
Assertion brfvidRP
|- ( ph -> ( A ( _I ` R ) B <-> A R B ) )

Proof

Step Hyp Ref Expression
1 brfvidRP.r
 |-  ( ph -> R e. _V )
2 dfid6
 |-  _I = ( r e. _V |-> U_ n e. { 1 } ( r ^r n ) )
3 1nn0
 |-  1 e. NN0
4 snssi
 |-  ( 1 e. NN0 -> { 1 } C_ NN0 )
5 3 4 mp1i
 |-  ( ph -> { 1 } C_ NN0 )
6 2 1 5 brmptiunrelexpd
 |-  ( ph -> ( A ( _I ` R ) B <-> E. n e. { 1 } A ( R ^r n ) B ) )
7 oveq2
 |-  ( n = 1 -> ( R ^r n ) = ( R ^r 1 ) )
8 7 breqd
 |-  ( n = 1 -> ( A ( R ^r n ) B <-> A ( R ^r 1 ) B ) )
9 8 rexsng
 |-  ( 1 e. NN0 -> ( E. n e. { 1 } A ( R ^r n ) B <-> A ( R ^r 1 ) B ) )
10 3 9 mp1i
 |-  ( ph -> ( E. n e. { 1 } A ( R ^r n ) B <-> A ( R ^r 1 ) B ) )
11 1 relexp1d
 |-  ( ph -> ( R ^r 1 ) = R )
12 11 breqd
 |-  ( ph -> ( A ( R ^r 1 ) B <-> A R B ) )
13 6 10 12 3bitrd
 |-  ( ph -> ( A ( _I ` R ) B <-> A R B ) )