Description: If two elements are connected by an indexed union of relational powers, then they are connected via n instances the relation, for some n . Generalization of dfrtrclrec2 . (Contributed by RP, 21-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brmptiunrelexpd.c | |- C = ( r e. _V |-> U_ n e. N ( r ^r n ) ) |
|
| brmptiunrelexpd.r | |- ( ph -> R e. _V ) |
||
| brmptiunrelexpd.n | |- ( ph -> N C_ NN0 ) |
||
| Assertion | brmptiunrelexpd | |- ( ph -> ( A ( C ` R ) B <-> E. n e. N A ( R ^r n ) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brmptiunrelexpd.c | |- C = ( r e. _V |-> U_ n e. N ( r ^r n ) ) |
|
| 2 | brmptiunrelexpd.r | |- ( ph -> R e. _V ) |
|
| 3 | brmptiunrelexpd.n | |- ( ph -> N C_ NN0 ) |
|
| 4 | nn0ex | |- NN0 e. _V |
|
| 5 | 4 | ssex | |- ( N C_ NN0 -> N e. _V ) |
| 6 | 3 5 | syl | |- ( ph -> N e. _V ) |
| 7 | 1 | briunov2 | |- ( ( R e. _V /\ N e. _V ) -> ( A ( C ` R ) B <-> E. n e. N A ( R ^r n ) B ) ) |
| 8 | 2 6 7 | syl2anc | |- ( ph -> ( A ( C ` R ) B <-> E. n e. N A ( R ^r n ) B ) ) |