Metamath Proof Explorer


Theorem brmptiunrelexpd

Description: If two elements are connected by an indexed union of relational powers, then they are connected via n instances the relation, for some n . Generalization of dfrtrclrec2 . (Contributed by RP, 21-Jul-2020)

Ref Expression
Hypotheses brmptiunrelexpd.c
|- C = ( r e. _V |-> U_ n e. N ( r ^r n ) )
brmptiunrelexpd.r
|- ( ph -> R e. _V )
brmptiunrelexpd.n
|- ( ph -> N C_ NN0 )
Assertion brmptiunrelexpd
|- ( ph -> ( A ( C ` R ) B <-> E. n e. N A ( R ^r n ) B ) )

Proof

Step Hyp Ref Expression
1 brmptiunrelexpd.c
 |-  C = ( r e. _V |-> U_ n e. N ( r ^r n ) )
2 brmptiunrelexpd.r
 |-  ( ph -> R e. _V )
3 brmptiunrelexpd.n
 |-  ( ph -> N C_ NN0 )
4 nn0ex
 |-  NN0 e. _V
5 4 ssex
 |-  ( N C_ NN0 -> N e. _V )
6 3 5 syl
 |-  ( ph -> N e. _V )
7 1 briunov2
 |-  ( ( R e. _V /\ N e. _V ) -> ( A ( C ` R ) B <-> E. n e. N A ( R ^r n ) B ) )
8 2 6 7 syl2anc
 |-  ( ph -> ( A ( C ` R ) B <-> E. n e. N A ( R ^r n ) B ) )