Description: If two elements are connected by an indexed union of relational powers, then they are connected via n instances the relation, for some n . Generalization of dfrtrclrec2 . (Contributed by RP, 21-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | brmptiunrelexpd.c | |- C = ( r e. _V |-> U_ n e. N ( r ^r n ) ) |
|
brmptiunrelexpd.r | |- ( ph -> R e. _V ) |
||
brmptiunrelexpd.n | |- ( ph -> N C_ NN0 ) |
||
Assertion | brmptiunrelexpd | |- ( ph -> ( A ( C ` R ) B <-> E. n e. N A ( R ^r n ) B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brmptiunrelexpd.c | |- C = ( r e. _V |-> U_ n e. N ( r ^r n ) ) |
|
2 | brmptiunrelexpd.r | |- ( ph -> R e. _V ) |
|
3 | brmptiunrelexpd.n | |- ( ph -> N C_ NN0 ) |
|
4 | nn0ex | |- NN0 e. _V |
|
5 | 4 | ssex | |- ( N C_ NN0 -> N e. _V ) |
6 | 3 5 | syl | |- ( ph -> N e. _V ) |
7 | 1 | briunov2 | |- ( ( R e. _V /\ N e. _V ) -> ( A ( C ` R ) B <-> E. n e. N A ( R ^r n ) B ) ) |
8 | 2 6 7 | syl2anc | |- ( ph -> ( A ( C ` R ) B <-> E. n e. N A ( R ^r n ) B ) ) |