Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Additional statements on relations and subclasses
Finite relationship composition.
brmptiunrelexpd
Metamath Proof Explorer
Description: If two elements are connected by an indexed union of relational powers,
then they are connected via n instances the relation, for some
n . Generalization of dfrtrclrec2 . (Contributed by RP , 21-Jul-2020)
Ref
Expression
Hypotheses
brmptiunrelexpd.c
⊢ C = r ∈ V ⟼ ⋃ n ∈ N r ↑ r n
brmptiunrelexpd.r
⊢ φ → R ∈ V
brmptiunrelexpd.n
⊢ φ → N ⊆ ℕ 0
Assertion
brmptiunrelexpd
⊢ φ → A C ⁡ R B ↔ ∃ n ∈ N A R ↑ r n B
Proof
Step
Hyp
Ref
Expression
1
brmptiunrelexpd.c
⊢ C = r ∈ V ⟼ ⋃ n ∈ N r ↑ r n
2
brmptiunrelexpd.r
⊢ φ → R ∈ V
3
brmptiunrelexpd.n
⊢ φ → N ⊆ ℕ 0
4
nn0ex
⊢ ℕ 0 ∈ V
5
4
ssex
⊢ N ⊆ ℕ 0 → N ∈ V
6
3 5
syl
⊢ φ → N ∈ V
7
1
briunov2
⊢ R ∈ V ∧ N ∈ V → A C ⁡ R B ↔ ∃ n ∈ N A R ↑ r n B
8
2 6 7
syl2anc
⊢ φ → A C ⁡ R B ↔ ∃ n ∈ N A R ↑ r n B