Metamath Proof Explorer


Theorem brmptiunrelexpd

Description: If two elements are connected by an indexed union of relational powers, then they are connected via n instances the relation, for some n . Generalization of dfrtrclrec2 . (Contributed by RP, 21-Jul-2020)

Ref Expression
Hypotheses brmptiunrelexpd.c 𝐶 = ( 𝑟 ∈ V ↦ 𝑛𝑁 ( 𝑟𝑟 𝑛 ) )
brmptiunrelexpd.r ( 𝜑𝑅 ∈ V )
brmptiunrelexpd.n ( 𝜑𝑁 ⊆ ℕ0 )
Assertion brmptiunrelexpd ( 𝜑 → ( 𝐴 ( 𝐶𝑅 ) 𝐵 ↔ ∃ 𝑛𝑁 𝐴 ( 𝑅𝑟 𝑛 ) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 brmptiunrelexpd.c 𝐶 = ( 𝑟 ∈ V ↦ 𝑛𝑁 ( 𝑟𝑟 𝑛 ) )
2 brmptiunrelexpd.r ( 𝜑𝑅 ∈ V )
3 brmptiunrelexpd.n ( 𝜑𝑁 ⊆ ℕ0 )
4 nn0ex 0 ∈ V
5 4 ssex ( 𝑁 ⊆ ℕ0𝑁 ∈ V )
6 3 5 syl ( 𝜑𝑁 ∈ V )
7 1 briunov2 ( ( 𝑅 ∈ V ∧ 𝑁 ∈ V ) → ( 𝐴 ( 𝐶𝑅 ) 𝐵 ↔ ∃ 𝑛𝑁 𝐴 ( 𝑅𝑟 𝑛 ) 𝐵 ) )
8 2 6 7 syl2anc ( 𝜑 → ( 𝐴 ( 𝐶𝑅 ) 𝐵 ↔ ∃ 𝑛𝑁 𝐴 ( 𝑅𝑟 𝑛 ) 𝐵 ) )