Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Additional statements on relations and subclasses
Finite relationship composition.
brmptiunrelexpd
Metamath Proof Explorer
Description: If two elements are connected by an indexed union of relational powers,
then they are connected via n instances the relation, for some
n . Generalization of dfrtrclrec2 . (Contributed by RP , 21-Jul-2020)
Ref
Expression
Hypotheses
brmptiunrelexpd.c
⊢ 𝐶 = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 ( 𝑟 ↑𝑟 𝑛 ) )
brmptiunrelexpd.r
⊢ ( 𝜑 → 𝑅 ∈ V )
brmptiunrelexpd.n
⊢ ( 𝜑 → 𝑁 ⊆ ℕ0 )
Assertion
brmptiunrelexpd
⊢ ( 𝜑 → ( 𝐴 ( 𝐶 ‘ 𝑅 ) 𝐵 ↔ ∃ 𝑛 ∈ 𝑁 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ) )
Proof
Step
Hyp
Ref
Expression
1
brmptiunrelexpd.c
⊢ 𝐶 = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 ( 𝑟 ↑𝑟 𝑛 ) )
2
brmptiunrelexpd.r
⊢ ( 𝜑 → 𝑅 ∈ V )
3
brmptiunrelexpd.n
⊢ ( 𝜑 → 𝑁 ⊆ ℕ0 )
4
nn0ex
⊢ ℕ0 ∈ V
5
4
ssex
⊢ ( 𝑁 ⊆ ℕ0 → 𝑁 ∈ V )
6
3 5
syl
⊢ ( 𝜑 → 𝑁 ∈ V )
7
1
briunov2
⊢ ( ( 𝑅 ∈ V ∧ 𝑁 ∈ V ) → ( 𝐴 ( 𝐶 ‘ 𝑅 ) 𝐵 ↔ ∃ 𝑛 ∈ 𝑁 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ) )
8
2 6 7
syl2anc
⊢ ( 𝜑 → ( 𝐴 ( 𝐶 ‘ 𝑅 ) 𝐵 ↔ ∃ 𝑛 ∈ 𝑁 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ) )