Description: A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fvilbd.r | |- ( ph -> R e. _V ) |
|
| Assertion | fvilbd | |- ( ph -> R C_ ( _I ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvilbd.r | |- ( ph -> R e. _V ) |
|
| 2 | ssid | |- R C_ R |
|
| 3 | fvi | |- ( R e. _V -> ( _I ` R ) = R ) |
|
| 4 | 1 3 | syl | |- ( ph -> ( _I ` R ) = R ) |
| 5 | 2 4 | sseqtrrid | |- ( ph -> R C_ ( _I ` R ) ) |