Metamath Proof Explorer


Theorem fvilbdRP

Description: A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis fvilbdRP.r
|- ( ph -> R e. _V )
Assertion fvilbdRP
|- ( ph -> R C_ ( _I ` R ) )

Proof

Step Hyp Ref Expression
1 fvilbdRP.r
 |-  ( ph -> R e. _V )
2 dfid6
 |-  _I = ( r e. _V |-> U_ n e. { 1 } ( r ^r n ) )
3 snex
 |-  { 1 } e. _V
4 3 a1i
 |-  ( ph -> { 1 } e. _V )
5 1ex
 |-  1 e. _V
6 5 snid
 |-  1 e. { 1 }
7 6 a1i
 |-  ( ph -> 1 e. { 1 } )
8 2 1 4 7 fvmptiunrelexplb1d
 |-  ( ph -> R C_ ( _I ` R ) )