Metamath Proof Explorer


Theorem fvilbdRP

Description: A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis fvilbdRP.r φ R V
Assertion fvilbdRP φ R I R

Proof

Step Hyp Ref Expression
1 fvilbdRP.r φ R V
2 dfid6 I = r V n 1 r r n
3 snex 1 V
4 3 a1i φ 1 V
5 1ex 1 V
6 5 snid 1 1
7 6 a1i φ 1 1
8 2 1 4 7 fvmptiunrelexplb1d φ R I R