Metamath Proof Explorer
Description: A set is a subset of its image under the identity relation.
(Contributed by RP, 22-Jul-2020)
(Proof modification is discouraged.)
|
|
Ref |
Expression |
|
Hypothesis |
fvilbdRP.r |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
|
Assertion |
fvilbdRP |
⊢ ( 𝜑 → 𝑅 ⊆ ( I ‘ 𝑅 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvilbdRP.r |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 2 |
|
dfid6 |
⊢ I = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ { 1 } ( 𝑟 ↑𝑟 𝑛 ) ) |
| 3 |
|
snex |
⊢ { 1 } ∈ V |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → { 1 } ∈ V ) |
| 5 |
|
1ex |
⊢ 1 ∈ V |
| 6 |
5
|
snid |
⊢ 1 ∈ { 1 } |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → 1 ∈ { 1 } ) |
| 8 |
2 1 4 7
|
fvmptiunrelexplb1d |
⊢ ( 𝜑 → 𝑅 ⊆ ( I ‘ 𝑅 ) ) |