Metamath Proof Explorer


Theorem fvilbdRP

Description: A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis fvilbdRP.r ( 𝜑𝑅 ∈ V )
Assertion fvilbdRP ( 𝜑𝑅 ⊆ ( I ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 fvilbdRP.r ( 𝜑𝑅 ∈ V )
2 dfid6 I = ( 𝑟 ∈ V ↦ 𝑛 ∈ { 1 } ( 𝑟𝑟 𝑛 ) )
3 snex { 1 } ∈ V
4 3 a1i ( 𝜑 → { 1 } ∈ V )
5 1ex 1 ∈ V
6 5 snid 1 ∈ { 1 }
7 6 a1i ( 𝜑 → 1 ∈ { 1 } )
8 2 1 4 7 fvmptiunrelexplb1d ( 𝜑𝑅 ⊆ ( I ‘ 𝑅 ) )