Metamath Proof Explorer


Theorem brfvrcld

Description: If two elements are connected by the reflexive closure of a relation, then they are connected via zero or one instances the relation. (Contributed by RP, 21-Jul-2020)

Ref Expression
Hypothesis brfvrcld.r ( 𝜑𝑅 ∈ V )
Assertion brfvrcld ( 𝜑 → ( 𝐴 ( r* ‘ 𝑅 ) 𝐵 ↔ ( 𝐴 ( 𝑅𝑟 0 ) 𝐵𝐴 ( 𝑅𝑟 1 ) 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 brfvrcld.r ( 𝜑𝑅 ∈ V )
2 dfrcl4 r* = ( 𝑟 ∈ V ↦ 𝑛 ∈ { 0 , 1 } ( 𝑟𝑟 𝑛 ) )
3 0nn0 0 ∈ ℕ0
4 1nn0 1 ∈ ℕ0
5 prssi ( ( 0 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → { 0 , 1 } ⊆ ℕ0 )
6 3 4 5 mp2an { 0 , 1 } ⊆ ℕ0
7 6 a1i ( 𝜑 → { 0 , 1 } ⊆ ℕ0 )
8 2 1 7 brmptiunrelexpd ( 𝜑 → ( 𝐴 ( r* ‘ 𝑅 ) 𝐵 ↔ ∃ 𝑛 ∈ { 0 , 1 } 𝐴 ( 𝑅𝑟 𝑛 ) 𝐵 ) )
9 oveq2 ( 𝑛 = 0 → ( 𝑅𝑟 𝑛 ) = ( 𝑅𝑟 0 ) )
10 9 breqd ( 𝑛 = 0 → ( 𝐴 ( 𝑅𝑟 𝑛 ) 𝐵𝐴 ( 𝑅𝑟 0 ) 𝐵 ) )
11 oveq2 ( 𝑛 = 1 → ( 𝑅𝑟 𝑛 ) = ( 𝑅𝑟 1 ) )
12 11 breqd ( 𝑛 = 1 → ( 𝐴 ( 𝑅𝑟 𝑛 ) 𝐵𝐴 ( 𝑅𝑟 1 ) 𝐵 ) )
13 10 12 rexprg ( ( 0 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → ( ∃ 𝑛 ∈ { 0 , 1 } 𝐴 ( 𝑅𝑟 𝑛 ) 𝐵 ↔ ( 𝐴 ( 𝑅𝑟 0 ) 𝐵𝐴 ( 𝑅𝑟 1 ) 𝐵 ) ) )
14 3 4 13 mp2an ( ∃ 𝑛 ∈ { 0 , 1 } 𝐴 ( 𝑅𝑟 𝑛 ) 𝐵 ↔ ( 𝐴 ( 𝑅𝑟 0 ) 𝐵𝐴 ( 𝑅𝑟 1 ) 𝐵 ) )
15 8 14 syl6bb ( 𝜑 → ( 𝐴 ( r* ‘ 𝑅 ) 𝐵 ↔ ( 𝐴 ( 𝑅𝑟 0 ) 𝐵𝐴 ( 𝑅𝑟 1 ) 𝐵 ) ) )