Step |
Hyp |
Ref |
Expression |
1 |
|
brfvrcld.r |
|- ( ph -> R e. _V ) |
2 |
|
dfrcl4 |
|- r* = ( r e. _V |-> U_ n e. { 0 , 1 } ( r ^r n ) ) |
3 |
|
0nn0 |
|- 0 e. NN0 |
4 |
|
1nn0 |
|- 1 e. NN0 |
5 |
|
prssi |
|- ( ( 0 e. NN0 /\ 1 e. NN0 ) -> { 0 , 1 } C_ NN0 ) |
6 |
3 4 5
|
mp2an |
|- { 0 , 1 } C_ NN0 |
7 |
6
|
a1i |
|- ( ph -> { 0 , 1 } C_ NN0 ) |
8 |
2 1 7
|
brmptiunrelexpd |
|- ( ph -> ( A ( r* ` R ) B <-> E. n e. { 0 , 1 } A ( R ^r n ) B ) ) |
9 |
|
oveq2 |
|- ( n = 0 -> ( R ^r n ) = ( R ^r 0 ) ) |
10 |
9
|
breqd |
|- ( n = 0 -> ( A ( R ^r n ) B <-> A ( R ^r 0 ) B ) ) |
11 |
|
oveq2 |
|- ( n = 1 -> ( R ^r n ) = ( R ^r 1 ) ) |
12 |
11
|
breqd |
|- ( n = 1 -> ( A ( R ^r n ) B <-> A ( R ^r 1 ) B ) ) |
13 |
10 12
|
rexprg |
|- ( ( 0 e. NN0 /\ 1 e. NN0 ) -> ( E. n e. { 0 , 1 } A ( R ^r n ) B <-> ( A ( R ^r 0 ) B \/ A ( R ^r 1 ) B ) ) ) |
14 |
3 4 13
|
mp2an |
|- ( E. n e. { 0 , 1 } A ( R ^r n ) B <-> ( A ( R ^r 0 ) B \/ A ( R ^r 1 ) B ) ) |
15 |
8 14
|
bitrdi |
|- ( ph -> ( A ( r* ` R ) B <-> ( A ( R ^r 0 ) B \/ A ( R ^r 1 ) B ) ) ) |