Metamath Proof Explorer


Theorem brfvrcld

Description: If two elements are connected by the reflexive closure of a relation, then they are connected via zero or one instances the relation. (Contributed by RP, 21-Jul-2020)

Ref Expression
Hypothesis brfvrcld.r
|- ( ph -> R e. _V )
Assertion brfvrcld
|- ( ph -> ( A ( r* ` R ) B <-> ( A ( R ^r 0 ) B \/ A ( R ^r 1 ) B ) ) )

Proof

Step Hyp Ref Expression
1 brfvrcld.r
 |-  ( ph -> R e. _V )
2 dfrcl4
 |-  r* = ( r e. _V |-> U_ n e. { 0 , 1 } ( r ^r n ) )
3 0nn0
 |-  0 e. NN0
4 1nn0
 |-  1 e. NN0
5 prssi
 |-  ( ( 0 e. NN0 /\ 1 e. NN0 ) -> { 0 , 1 } C_ NN0 )
6 3 4 5 mp2an
 |-  { 0 , 1 } C_ NN0
7 6 a1i
 |-  ( ph -> { 0 , 1 } C_ NN0 )
8 2 1 7 brmptiunrelexpd
 |-  ( ph -> ( A ( r* ` R ) B <-> E. n e. { 0 , 1 } A ( R ^r n ) B ) )
9 oveq2
 |-  ( n = 0 -> ( R ^r n ) = ( R ^r 0 ) )
10 9 breqd
 |-  ( n = 0 -> ( A ( R ^r n ) B <-> A ( R ^r 0 ) B ) )
11 oveq2
 |-  ( n = 1 -> ( R ^r n ) = ( R ^r 1 ) )
12 11 breqd
 |-  ( n = 1 -> ( A ( R ^r n ) B <-> A ( R ^r 1 ) B ) )
13 10 12 rexprg
 |-  ( ( 0 e. NN0 /\ 1 e. NN0 ) -> ( E. n e. { 0 , 1 } A ( R ^r n ) B <-> ( A ( R ^r 0 ) B \/ A ( R ^r 1 ) B ) ) )
14 3 4 13 mp2an
 |-  ( E. n e. { 0 , 1 } A ( R ^r n ) B <-> ( A ( R ^r 0 ) B \/ A ( R ^r 1 ) B ) )
15 8 14 bitrdi
 |-  ( ph -> ( A ( r* ` R ) B <-> ( A ( R ^r 0 ) B \/ A ( R ^r 1 ) B ) ) )