Step |
Hyp |
Ref |
Expression |
1 |
|
brfvrcld2.r |
|- ( ph -> R e. _V ) |
2 |
1
|
brfvrcld |
|- ( ph -> ( A ( r* ` R ) B <-> ( A ( R ^r 0 ) B \/ A ( R ^r 1 ) B ) ) ) |
3 |
|
relexp0g |
|- ( R e. _V -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
4 |
1 3
|
syl |
|- ( ph -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
5 |
4
|
breqd |
|- ( ph -> ( A ( R ^r 0 ) B <-> A ( _I |` ( dom R u. ran R ) ) B ) ) |
6 |
|
relres |
|- Rel ( _I |` ( dom R u. ran R ) ) |
7 |
6
|
releldmi |
|- ( A ( _I |` ( dom R u. ran R ) ) B -> A e. dom ( _I |` ( dom R u. ran R ) ) ) |
8 |
6
|
relelrni |
|- ( A ( _I |` ( dom R u. ran R ) ) B -> B e. ran ( _I |` ( dom R u. ran R ) ) ) |
9 |
|
dmresi |
|- dom ( _I |` ( dom R u. ran R ) ) = ( dom R u. ran R ) |
10 |
9
|
eleq2i |
|- ( A e. dom ( _I |` ( dom R u. ran R ) ) <-> A e. ( dom R u. ran R ) ) |
11 |
10
|
biimpi |
|- ( A e. dom ( _I |` ( dom R u. ran R ) ) -> A e. ( dom R u. ran R ) ) |
12 |
|
rnresi |
|- ran ( _I |` ( dom R u. ran R ) ) = ( dom R u. ran R ) |
13 |
12
|
eleq2i |
|- ( B e. ran ( _I |` ( dom R u. ran R ) ) <-> B e. ( dom R u. ran R ) ) |
14 |
13
|
biimpi |
|- ( B e. ran ( _I |` ( dom R u. ran R ) ) -> B e. ( dom R u. ran R ) ) |
15 |
11 14
|
anim12i |
|- ( ( A e. dom ( _I |` ( dom R u. ran R ) ) /\ B e. ran ( _I |` ( dom R u. ran R ) ) ) -> ( A e. ( dom R u. ran R ) /\ B e. ( dom R u. ran R ) ) ) |
16 |
7 8 15
|
syl2anc |
|- ( A ( _I |` ( dom R u. ran R ) ) B -> ( A e. ( dom R u. ran R ) /\ B e. ( dom R u. ran R ) ) ) |
17 |
|
resieq |
|- ( ( A e. ( dom R u. ran R ) /\ B e. ( dom R u. ran R ) ) -> ( A ( _I |` ( dom R u. ran R ) ) B <-> A = B ) ) |
18 |
16 17
|
biadanii |
|- ( A ( _I |` ( dom R u. ran R ) ) B <-> ( ( A e. ( dom R u. ran R ) /\ B e. ( dom R u. ran R ) ) /\ A = B ) ) |
19 |
|
df-3an |
|- ( ( A e. ( dom R u. ran R ) /\ B e. ( dom R u. ran R ) /\ A = B ) <-> ( ( A e. ( dom R u. ran R ) /\ B e. ( dom R u. ran R ) ) /\ A = B ) ) |
20 |
18 19
|
bitr4i |
|- ( A ( _I |` ( dom R u. ran R ) ) B <-> ( A e. ( dom R u. ran R ) /\ B e. ( dom R u. ran R ) /\ A = B ) ) |
21 |
5 20
|
bitrdi |
|- ( ph -> ( A ( R ^r 0 ) B <-> ( A e. ( dom R u. ran R ) /\ B e. ( dom R u. ran R ) /\ A = B ) ) ) |
22 |
1
|
relexp1d |
|- ( ph -> ( R ^r 1 ) = R ) |
23 |
22
|
breqd |
|- ( ph -> ( A ( R ^r 1 ) B <-> A R B ) ) |
24 |
21 23
|
orbi12d |
|- ( ph -> ( ( A ( R ^r 0 ) B \/ A ( R ^r 1 ) B ) <-> ( ( A e. ( dom R u. ran R ) /\ B e. ( dom R u. ran R ) /\ A = B ) \/ A R B ) ) ) |
25 |
2 24
|
bitrd |
|- ( ph -> ( A ( r* ` R ) B <-> ( ( A e. ( dom R u. ran R ) /\ B e. ( dom R u. ran R ) /\ A = B ) \/ A R B ) ) ) |