Metamath Proof Explorer


Theorem brfvrcld2

Description: If two elements are connected by the reflexive closure of a relation, then they are equal or related by relation. (Contributed by RP, 21-Jul-2020)

Ref Expression
Hypothesis brfvrcld2.r φ R V
Assertion brfvrcld2 φ A r* R B A dom R ran R B dom R ran R A = B A R B

Proof

Step Hyp Ref Expression
1 brfvrcld2.r φ R V
2 1 brfvrcld φ A r* R B A R r 0 B A R r 1 B
3 relexp0g R V R r 0 = I dom R ran R
4 1 3 syl φ R r 0 = I dom R ran R
5 4 breqd φ A R r 0 B A I dom R ran R B
6 relres Rel I dom R ran R
7 6 releldmi A I dom R ran R B A dom I dom R ran R
8 6 relelrni A I dom R ran R B B ran I dom R ran R
9 dmresi dom I dom R ran R = dom R ran R
10 9 eleq2i A dom I dom R ran R A dom R ran R
11 10 biimpi A dom I dom R ran R A dom R ran R
12 rnresi ran I dom R ran R = dom R ran R
13 12 eleq2i B ran I dom R ran R B dom R ran R
14 13 biimpi B ran I dom R ran R B dom R ran R
15 11 14 anim12i A dom I dom R ran R B ran I dom R ran R A dom R ran R B dom R ran R
16 7 8 15 syl2anc A I dom R ran R B A dom R ran R B dom R ran R
17 resieq A dom R ran R B dom R ran R A I dom R ran R B A = B
18 16 17 biadanii A I dom R ran R B A dom R ran R B dom R ran R A = B
19 df-3an A dom R ran R B dom R ran R A = B A dom R ran R B dom R ran R A = B
20 18 19 bitr4i A I dom R ran R B A dom R ran R B dom R ran R A = B
21 5 20 bitrdi φ A R r 0 B A dom R ran R B dom R ran R A = B
22 1 relexp1d φ R r 1 = R
23 22 breqd φ A R r 1 B A R B
24 21 23 orbi12d φ A R r 0 B A R r 1 B A dom R ran R B dom R ran R A = B A R B
25 2 24 bitrd φ A r* R B A dom R ran R B dom R ran R A = B A R B