Description: If two elements are connected by the reflexive closure of a relation, then they are equal or related by relation. (Contributed by RP, 21-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | brfvrcld2.r | |
|
Assertion | brfvrcld2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfvrcld2.r | |
|
2 | 1 | brfvrcld | |
3 | relexp0g | |
|
4 | 1 3 | syl | |
5 | 4 | breqd | |
6 | relres | |
|
7 | 6 | releldmi | |
8 | 6 | relelrni | |
9 | dmresi | |
|
10 | 9 | eleq2i | |
11 | 10 | biimpi | |
12 | rnresi | |
|
13 | 12 | eleq2i | |
14 | 13 | biimpi | |
15 | 11 14 | anim12i | |
16 | 7 8 15 | syl2anc | |
17 | resieq | |
|
18 | 16 17 | biadanii | |
19 | df-3an | |
|
20 | 18 19 | bitr4i | |
21 | 5 20 | bitrdi | |
22 | 1 | relexp1d | |
23 | 22 | breqd | |
24 | 21 23 | orbi12d | |
25 | 2 24 | bitrd | |