Metamath Proof Explorer


Theorem brfvrcld2

Description: If two elements are connected by the reflexive closure of a relation, then they are equal or related by relation. (Contributed by RP, 21-Jul-2020)

Ref Expression
Hypothesis brfvrcld2.r φRV
Assertion brfvrcld2 φAr*RBAdomRranRBdomRranRA=BARB

Proof

Step Hyp Ref Expression
1 brfvrcld2.r φRV
2 1 brfvrcld φAr*RBARr0BARr1B
3 relexp0g RVRr0=IdomRranR
4 1 3 syl φRr0=IdomRranR
5 4 breqd φARr0BAIdomRranRB
6 relres RelIdomRranR
7 6 releldmi AIdomRranRBAdomIdomRranR
8 6 relelrni AIdomRranRBBranIdomRranR
9 dmresi domIdomRranR=domRranR
10 9 eleq2i AdomIdomRranRAdomRranR
11 10 biimpi AdomIdomRranRAdomRranR
12 rnresi ranIdomRranR=domRranR
13 12 eleq2i BranIdomRranRBdomRranR
14 13 biimpi BranIdomRranRBdomRranR
15 11 14 anim12i AdomIdomRranRBranIdomRranRAdomRranRBdomRranR
16 7 8 15 syl2anc AIdomRranRBAdomRranRBdomRranR
17 resieq AdomRranRBdomRranRAIdomRranRBA=B
18 16 17 biadanii AIdomRranRBAdomRranRBdomRranRA=B
19 df-3an AdomRranRBdomRranRA=BAdomRranRBdomRranRA=B
20 18 19 bitr4i AIdomRranRBAdomRranRBdomRranRA=B
21 5 20 bitrdi φARr0BAdomRranRBdomRranRA=B
22 1 relexp1d φRr1=R
23 22 breqd φARr1BARB
24 21 23 orbi12d φARr0BARr1BAdomRranRBdomRranRA=BARB
25 2 24 bitrd φAr*RBAdomRranRBdomRranRA=BARB