Metamath Proof Explorer


Theorem fvilbd

Description: A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypothesis fvilbd.r ( 𝜑𝑅 ∈ V )
Assertion fvilbd ( 𝜑𝑅 ⊆ ( I ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 fvilbd.r ( 𝜑𝑅 ∈ V )
2 ssid 𝑅𝑅
3 fvi ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = 𝑅 )
4 1 3 syl ( 𝜑 → ( I ‘ 𝑅 ) = 𝑅 )
5 2 4 sseqtrrid ( 𝜑𝑅 ⊆ ( I ‘ 𝑅 ) )