Metamath Proof Explorer


Theorem brid

Description: Property of the identity binary relation. (Contributed by Peter Mazsa, 18-Dec-2021)

Ref Expression
Assertion brid AIBBIA

Proof

Step Hyp Ref Expression
1 cnvi I-1=I
2 1 breqi AI-1BAIB
3 reli RelI
4 3 relbrcnv AI-1BBIA
5 2 4 bitr3i AIBBIA